Suppr超能文献

通过由肽修饰的非病毒载体和纳米纤维支架组成的基因激活基质来控制 pVEGF 的递释,以用于皮肤创伤愈合。

Controlled pVEGF delivery via a gene-activated matrix comprised of a peptide-modified non-viral vector and a nanofibrous scaffold for skin wound healing.

机构信息

Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.

Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.

出版信息

Acta Biomater. 2022 Mar 1;140:149-162. doi: 10.1016/j.actbio.2021.11.037. Epub 2021 Nov 28.

Abstract

Regulating cell function and tissue formation by combining gene delivery with functional scaffolds to create gene-activated matrices (GAMs) is a promising strategy for tissue engineering. However, fabrication of GAMs with low cytotoxicity, high transfection efficiency, and long-term gene delivery properties remains a challenge. In this study, a non-viral DNA delivery nanocomplex was developed by modifying poly (D, L-lactic-co-glycolic acid)/polyethylenimine (PLGA/PEI) nanoparticles with the cell-penetrating peptide KALA. Subsequently, the nanocomplex carrying plasmid DNA encoding vascular endothelial growth factor (pVEGF) was immobilized onto a polydopamine-coated electrospun alginate nanofibrous scaffold, resulting in a GAM for enhanced skin wound healing. The nanocomplex exhibited much lower cytotoxicity and comparable or even higher transfection efficiency compared with PEI. The GAM enabled sustained gene release and long-tern transgene expression of VEGF in vitro. In an excisional full-thickness skin wound rat model, the GAM could accelerate wound closure, promote complete re-epithelization, reduce inflammatory response, and enhance neovascularization, ultimately enhancing skin wound healing. The current GAM comprising a low-toxic gene delivery nanocomplex and a biocompatible 3D nanofibrous scaffold demonstrates great potential for mediating long-term cell functions and may become a powerful tool for gene delivery in tissue engineering. STATEMENT OF SIGNIFICANCE: Gene delivery is a promising strategy in promoting tissue regeneration as an effective alternative to growth factor delivery, but the study on three-dimensional gene-activated scaffolds remains in its infancy. Herein, a biodegradable nanofibrous gene-activated matrix integrating non-viral nanoparticle vector was designed and evaluated both in vitro and in vivo. The results show that the nanoparticle vector provided high transfection efficiency with minimal cytotoxicity. After surface immobilization of the nanocomplexes carrying plasmid DNA encoding vascular endothelial growth factor (pVEGF), the nanofibrous scaffold enabled sustained DNA release and long-term transgene expression in vitro. In a rat full-thickness skin wound model, the scaffold could accelerate wound healing. This innovative gene-activated matrix can be a promising candidate for tissue regeneration.

摘要

通过将基因传递与功能性支架相结合来调节细胞功能和组织形成,以创建基因激活基质(GAMs),这是组织工程的一种很有前途的策略。然而,制造具有低细胞毒性、高转染效率和长期基因传递特性的 GAMs 仍然是一个挑战。在这项研究中,通过修饰具有细胞穿透肽 KALA 的聚(D,L-乳酸-共-乙醇酸)/聚乙烯亚胺(PLGA/PEI)纳米粒,开发了一种非病毒 DNA 传递纳米复合物。随后,将携带编码血管内皮生长因子(pVEGF)的质粒 DNA 的纳米复合物固定在多巴胺涂层的电纺海藻酸钠纳米纤维支架上,从而得到一种用于增强皮肤伤口愈合的 GAM。纳米复合物表现出比 PEI 低得多的细胞毒性和相当或甚至更高的转染效率。GAM 能够在体外实现持续的基因释放和 VEGF 的长期转基因表达。在切除的全层皮肤伤口大鼠模型中,GAM 可以加速伤口闭合,促进完全上皮化,减少炎症反应,并促进血管生成,从而最终增强皮肤伤口愈合。包含低毒性基因传递纳米复合物和生物相容性 3D 纳米纤维支架的当前 GAM 显示出在调节长期细胞功能方面的巨大潜力,并且可能成为组织工程中基因传递的有力工具。

意义声明

基因传递是促进组织再生的一种很有前途的策略,是生长因子传递的有效替代方法,但对三维基因激活支架的研究仍处于起步阶段。本文设计并评估了一种将非病毒纳米载体与可生物降解的纳米纤维支架整合在一起的可降解纳米纤维基因激活基质。结果表明,纳米载体具有最小的细胞毒性,可提供高转染效率。在将携带编码血管内皮生长因子(pVEGF)的质粒 DNA 的纳米复合物进行表面固定后,纳米纤维支架在体外实现了 DNA 的持续释放和长期转基因表达。在大鼠全层皮肤伤口模型中,支架可以加速伤口愈合。这种创新的基因激活基质可能成为组织再生的有前途的候选物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验