文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

粪便微生物移植治疗慢传输型便秘的疗效及其基于蛋白质消化吸收途径的相关机制。

Effect of fecal microbiota transplantation in patients with slow transit constipation and the relative mechanisms based on the protein digestion and absorption pathway.

机构信息

School of Medicine, Nankai University, Tianjin, 300071, China.

Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.

出版信息

J Transl Med. 2021 Dec 1;19(1):490. doi: 10.1186/s12967-021-03152-2.


DOI:10.1186/s12967-021-03152-2
PMID:34852831
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8638484/
Abstract

BACKGROUND: Fecal microbiota transplantation (FMT) is considered an effective treatment for slow transit constipation (STC); nevertheless, the mechanism remains unclear. METHODS: In this study, eight patients with STC were selected according to the inclusion and exclusion criteria; they then received three treatments of FMT. The feces and serum of STC patients were collected after each treatment and analyzed by integrating 16 s rRNA microbiome and metabolomic analyses. RESULTS: The results showed that the percentage of clinical improvement reached 62.5% and the rates of patients' clinical remission achieved 75% after the third treatment. At the same time, FMT improved the Wexner constipation scale (WCS), the Gastrointestinal Quality-of-Life Index (GIQLI) and Hamilton Depression Scale (HAMD). Fecal microbiome alpha diversity and beta diversity altered significantly after FMT. Analysis of the 16 s rRNA microbiome showed that the numbers of Bacteroidetes (Prevotell/Bacteroides) and Firmicute (Roseburia/Blautia) decreased, whereas Actinobacteria (Bifidobacterium), Proteobacteria (Escherichia), and Firmicute (Lactobacillus) increased after FMT. The metabolomics analyses showed that the stool of FMT-treated patients were characterized by relatively high levels of N-Acetyl-L-glutamate, gamma-L-glutamyl-L-glutamic acid, Glycerophosphocholine, et al., after FMT. Compared with baseline, the serum of treated patients was characterized by relatively high levels of L-Arginine, L-Threonine, Ser-Arg, Indoleacrylic acid, Phe-Tyr, 5-L-Glutamyl-L-alanine, and lower levels of Erucamide after the treatment. The correlation analysis between the metabolites and gut microbiota showed a significant correlation. For example, L-Arginine was positively correlated with lactobacillus, et al. L-Threonine was positively correlated with Anaerovibrio, Sediminibacterium but negatively correlated with Phascolarctobacterium. Erucamide had significant negative correlations with Sediminibacterium and Sharpea, while being positively correlated with Phascolarctobacterium. Enriched KEGG pathways analysis demonstrated that the protein digestion and absorption pathways gradually upregulated with the increase of FMT frequency. The L-Arginine and L-Threonine were also involved in the pathway. A large amount of Na + was absorbed in the pathway, so that it might increase mucus secretion and electrical excitability of GI smooth muscle. CONCLUSIONS: Therefore, we speculated that FMT changed the patients' gut microbiota and metabolites involved in the protein digestion and absorption pathways, thereby improving the symptoms of STC. Study on the effectiveness and safety of FMT in the treatment of STC. The study was reviewed and approved by Ethics Committee of Tianjin People's Hospital (ChiCTR2000033227) in 2020.

摘要

背景:粪便微生物群移植(FMT)被认为是治疗慢传输型便秘(STC)的有效方法;然而,其机制仍不清楚。

方法:本研究根据纳入和排除标准选择了 8 例 STC 患者,他们接受了 3 次 FMT 治疗。在每次治疗后收集 STC 患者的粪便和血清,并通过整合 16s rRNA 微生物组和代谢组学分析进行分析。

结果:结果显示,第三次治疗后临床改善率达到 62.5%,临床缓解率达到 75%。同时,FMT 改善了 Wexner 便秘量表(WCS)、胃肠道生活质量指数(GIQLI)和汉密尔顿抑郁量表(HAMD)。FMT 后粪便微生物组 α多样性和 β多样性明显改变。16s rRNA 微生物组分析显示,FMT 后拟杆菌/双歧杆菌和厚壁菌门(Roseburia/Blautia)数量减少,而放线菌(双歧杆菌)、变形菌(埃希氏菌)和厚壁菌门(乳杆菌)数量增加。代谢组学分析表明,FMT 治疗后患者的粪便以 N-乙酰-L-谷氨酸、γ-L-谷氨酰-L-谷氨酸、甘油磷酸胆碱等水平较高为特征。与基线相比,治疗后患者的血清以 L-精氨酸、L-苏氨酸、丝氨酸-精氨酸、吲哚丙烯酸、苯丙氨酸-酪氨酸、5-L-谷氨酰-L-丙氨酸水平较高,而神经酰胺水平较低。代谢物与肠道微生物群的相关性分析表明,两者之间存在显著相关性。例如,L-精氨酸与乳杆菌等呈正相关。L-苏氨酸与 Anaerovibrio、Sediminibacterium 呈正相关,与 Phascolarctobacterium 呈负相关。神经酰胺与 Sediminibacterium 和 Sharpea 呈显著负相关,与 Phascolarctobacterium 呈正相关。富集的 KEGG 通路分析表明,蛋白消化吸收途径随着 FMT 频率的增加逐渐上调。L-精氨酸和 L-苏氨酸也参与了该途径。该途径中大量吸收 Na+,可能会增加 GI 平滑肌的黏液分泌和电兴奋性。

结论:因此,我们推测 FMT 改变了患者参与蛋白消化吸收途径的肠道微生物群和代谢物,从而改善了 STC 的症状。研究 FMT 治疗 STC 的有效性和安全性。本研究于 2020 年经天津市人民医院伦理委员会(ChiCTR2000033227)审查和批准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/b8365ae38f7b/12967_2021_3152_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/bd895c510996/12967_2021_3152_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/483245bcf389/12967_2021_3152_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/7d37cb857845/12967_2021_3152_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/7bd4c9096fd1/12967_2021_3152_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/5573d71bb99f/12967_2021_3152_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/0e40f5ca1c97/12967_2021_3152_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/ac703e13e7fd/12967_2021_3152_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/01b006e46a33/12967_2021_3152_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/f7caab197cb8/12967_2021_3152_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/11704e14ea7c/12967_2021_3152_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/a632ad3d2bd5/12967_2021_3152_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/254a4f133154/12967_2021_3152_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/b8365ae38f7b/12967_2021_3152_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/bd895c510996/12967_2021_3152_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/483245bcf389/12967_2021_3152_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/7d37cb857845/12967_2021_3152_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/7bd4c9096fd1/12967_2021_3152_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/5573d71bb99f/12967_2021_3152_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/0e40f5ca1c97/12967_2021_3152_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/ac703e13e7fd/12967_2021_3152_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/01b006e46a33/12967_2021_3152_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/f7caab197cb8/12967_2021_3152_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/11704e14ea7c/12967_2021_3152_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/a632ad3d2bd5/12967_2021_3152_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/254a4f133154/12967_2021_3152_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/8638484/b8365ae38f7b/12967_2021_3152_Fig13_HTML.jpg

相似文献

[1]
Effect of fecal microbiota transplantation in patients with slow transit constipation and the relative mechanisms based on the protein digestion and absorption pathway.

J Transl Med. 2021-12-1

[2]
[Short-term efficacy on fecal microbiota transplantation combined with soluble dietary fiber and probiotics in the treatment of slow transit constipation].

Zhonghua Wei Chang Wai Ke Za Zhi. 2016-12-25

[3]
Fecal Microbiota Transplantation in Combination with Soluble Dietary Fiber for Treatment of Slow Transit Constipation: A Pilot Study.

Arch Med Res. 2016-7-4

[4]
[Effect of fecal bacterial preservation time on the outcomes of fecal microbiota transplantation for slow transit constipation].

Zhonghua Wei Chang Wai Ke Za Zhi. 2020-7-10

[5]
Correlation between slow transit constipation and spleen deficiency, and gut microbiota: a pilot study.

J Tradit Chin Med. 2022-6

[6]
Treatment of Slow Transit Constipation With Fecal Microbiota Transplantation: A Pilot Study.

J Clin Gastroenterol. 2016

[7]
Multi-omics analysis of fecal microbiota transplantation's impact on functional constipation and comorbid depression and anxiety.

BMC Microbiol. 2023-12-7

[8]
Long-term follow-up of the effects of fecal microbiota transplantation in combination with soluble dietary fiber as a therapeutic regimen in slow transit constipation.

Sci China Life Sci. 2018-2-6

[9]
The impact of small intestinal bacterial overgrowth on the efficacy of fecal microbiota transplantation in patients with chronic constipation.

mBio. 2024-10-16

[10]
[Effects of fecal microbiota transplantation in different routes on the clinical efficacy of slow transit constipation].

Zhonghua Wei Chang Wai Ke Za Zhi. 2020-7-10

引用本文的文献

[1]
Dietary microbes and functional dyspepsia: modulating the gut microecology for therapeutic benefit.

Front Nutr. 2025-8-19

[2]
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury.

Metabolites. 2025-7-31

[3]
Fecal microbiota transplantation for chronic constipation: a systematic review and meta-analysis of clinical efficacy, safety, and microbial dynamics.

Front Microbiol. 2025-7-31

[4]
Glory LG12 preventives loperamide-induced constipation in mice by modulating intestinal flora and metabolic pathways.

Front Microbiol. 2025-7-11

[5]
Research on functional constipation with anxiety or depression: a bibliometric analysis.

Front Psychiatry. 2025-6-18

[6]
Correlation of the intestinal flora and its metabolites with the colonic transport function in functional constipation.

Front Microbiol. 2025-5-21

[7]
Nutrient intakes and metabolomic profiles associated with animal source energy percentage in children's diets.

Sci Rep. 2025-5-27

[8]
Aqueous extract of Mill. relieves functional constipation by modulating the enteric nervous system and gut micro-ecosystems.

Front Nutr. 2025-5-7

[9]
Efficacy of a postbiotic and its components in promoting colonic transit and alleviating chronic constipation in humans and mice.

Cell Rep Med. 2025-5-20

[10]
Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases.

Adv Sci (Weinh). 2025-4

本文引用的文献

[1]
Gut Microbiota Composition Changes in Constipated Women of Reproductive Age.

Front Cell Infect Microbiol. 2021-1-21

[2]
Fermented milk containing Lactobacillus casei Zhang and Bifidobacterium animalis ssp. lactis V9 alleviated constipation symptoms through regulation of intestinal microbiota, inflammation, and metabolic pathways.

J Dairy Sci. 2020-12

[3]
Formulation of traditional Chinese medicine and its application on intestinal flora of constipated rats.

Microb Cell Fact. 2020-11-18

[4]
Potential role of fecal microbiota in patients with constipation.

Therap Adv Gastroenterol. 2020-10-31

[5]
Infusion of donor feces affects the gut-brain axis in humans with metabolic syndrome.

Mol Metab. 2020-12

[6]
Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice.

Nutrition. 2020-5

[7]
OPK-3 from Kimchi Prevents Obesity and Modulates the Expression of Adipogenic and Pro-Inflammatory Genes in Adipose Tissue of Diet-Induced Obese Mice.

Nutrients. 2020-2-26

[8]
The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: Secondary endpoints of a double blind, randomized, placebo-controlled trial.

EBioMedicine. 2019-12-23

[9]
microRNA overexpression in slow transit constipation leads to reduced Na1.5 current and altered smooth muscle contractility.

Gut. 2019-11-22

[10]
Effect of Tong Xie Yao Fang on endogenous metabolites in urine of irritable bowel syndrome model rats.

World J Gastroenterol. 2019-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索