Suppr超能文献

FWNNet:基于模糊逻辑和基于小波的神经网络的机器学习方法的脑肿瘤诊断新分类器的介绍。

FWNNet: Presentation of a New Classifier of Brain Tumor Diagnosis Based on Fuzzy Logic and the Wavelet-Based Neural Network Using Machine-Learning Methods.

机构信息

Department of Industrial Engineering, Urmia University of Technology, Urmia, Iran.

Department of Electrical Engineering, Golestan University, Gorgan, Iran.

出版信息

Comput Intell Neurosci. 2021 Nov 22;2021:8542637. doi: 10.1155/2021/8542637. eCollection 2021.

Abstract

In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate.

摘要

在本文中,我们提出了一种基于模糊逻辑和神经网络形式的小波变换的新型分类器。该分类器包括一个预测与标签或类对应的数值特征的层。所提出的分类器应用于脑肿瘤诊断。对于特征提取,使用具有四个高斯函数的分形模型。分类是在 2000 张 MRI 图像上进行的。关于结果,DT、KNN、LDA、NB、MLP 和 SVM 的准确性分别为 93.5%、87.6%、61.5%、57.5%、68.5%和 43.6%。基于这些结果,所提出的 FWNNet 以 100%的最高准确率展示了分形特征提取方法和基于 MRI 图像的脑肿瘤诊断的优越性。基于这些结果,用于诊断脑肿瘤的最佳分类器是 FWNNet 架构。然而,其次和第三高性能的分类器分别是 DT 和 KNN。此外,所提出的 FWNNet 方法还用于脑肿瘤的分割。在本文中,我们提出了一种基于 FWNNet 层的新型监督分割方法。在训练过程中,输入图像应该用扫频滤波器重塑为与重塑的真实图像对应的向量。在训练过程中,我们执行了粒子群算法来优化梯度下降算法。为此,使用了 80 张 MRI 图像来分割脑肿瘤。基于 ROC 曲线的结果,可以估计所提出的层可以以高真阳性率分割脑肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69d6/8629672/d4c4979410ad/CIN2021-8542637.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验