Suppr超能文献

基于小波变换的创新耦合模型预测短期 PM10 浓度。

An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration.

机构信息

School of Vehicle and Energy, Yan Shan University, Qinhuangdao, 066004, China; School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.

School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.

出版信息

J Environ Manage. 2021 Jul 1;289:112438. doi: 10.1016/j.jenvman.2021.112438. Epub 2021 Apr 16.

Abstract

Wavelet transform (WT) is an advanced preprocessing technique, which has been widely used in PM 10 prediction. However, this technique cannot provide stable performance due to the empirical selection of wavelet's layers. For fixing the optimal wavelet's layers in PM10 forecasting, an innovative coupled model based on WT, long short-term memory (LSTM), and SAE (stacked autoencoder) are proposed. This study designs a crossover experiment with 960 high- and low-frequency components by wavelet decomposition and predicts each component with SAE-LSTM based on 12 samples from different regions. The results indicate that the developed model outperforms other BiLSTM (Biredictional LSTM) and LSTM based on some error evaluation indicators (i.e. Nash-Sutcliffe efficiency coefficient (NSEC)), and compared with other steps, the accuracy of two-step prediction is the highest in view of root mean squares error (RMSE). In addition, for 12 samples, the prediction accuracy by using high layers is higher than that by adopting low layers for decomposing them. This paper fixes the optimal wavelet' layers in PM10 prediction, which provides a meaningful reference in other prediction scenarios based on the application of WT.

摘要

小波变换(WT)是一种先进的预处理技术,已广泛应用于 PM10 预测。然而,由于小波层数的经验选择,该技术的性能不稳定。为了在 PM10 预测中确定最优的小波层数,提出了一种基于 WT、长短时记忆(LSTM)和堆叠自动编码器(SAE)的创新耦合模型。本研究通过小波分解设计了一个包含 960 个高低频分量的交叉实验,并基于来自不同区域的 12 个样本,用 SAE-LSTM 预测每个分量。结果表明,与其他双向 LSTM(BiLSTM)和基于一些误差评估指标(即纳什-苏特克里夫效率系数(NSEC))的 LSTM 相比,所开发的模型表现更好,与其他步骤相比,在均方根误差(RMSE)方面,两步预测的精度最高。此外,对于 12 个样本,对其进行分解时采用高层的预测精度高于采用低层的预测精度。本文确定了 PM10 预测中最优的小波层数,这为基于 WT 应用的其他预测场景提供了有意义的参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验