Suppr超能文献

基于深度学习的蛛网膜下腔出血检测与诊断。

Deep Learning-Based Detection and Diagnosis of Subarachnoid Hemorrhage.

机构信息

Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yongchuan, Chongqing 402160, China.

Chongqing Medical University, Department of Neurosurgery, Yongchuan, Chongqing 402160, China.

出版信息

J Healthc Eng. 2021 Nov 22;2021:9639419. doi: 10.1155/2021/9639419. eCollection 2021.

Abstract

Subarachnoid hemorrhage (SAH) is one of the critical and severe neurological diseases with high morbidity and mortality. Head computed tomography (CT) is among the preferred methods for the diagnosis of SAH, which is confirmed by CT showing high-density shadow in the subarachnoid space. Analysis of these images through a deep learning-based subarachnoid hemorrhage will reduce the approximate rate of misdiagnosis in general and missed diagnosis by clinicians in particular. Deep learning-based detection of subarachnoid hemorrhage mainly includes two tasks, i.e., subarachnoid hemorrhage classification and subarachnoid hemorrhage region segmentation. However, it is difficult to effectively judge reliability of the model and classify bleeding which is based on limited predictive probability of convolutional neural network output. Moreover, deep learning-based bleeding area segmentation requires a large amount of training data to be marked in advance and the large number of network parameters makes the model training unable to reach the optimal. To resolve these problems associated with existing models, Bayesian deep learning and neural network-based hybrid model is presented in this paper to estimate uncertainty and efficiently classify subarachnoid hemorrhage. Uncertainty estimation of the proposed model helps in judging whether the model's prediction is reliable or not. Additionally, it is used to guide clinicians to find the neglected subarachnoid hemorrhage area. In addition, a teacher-student mechanism deep learning model was designed to introduce observational uncertainty estimation for semisupervised learning of subarachnoid hemorrhage. Observation uncertainty estimation detects the uncertain bleeding areas in CT images and then selects areas with high reliability. Finally, it uses these unlabeled data for model training purposes as well.

摘要

蛛网膜下腔出血(SAH)是一种严重的神经科急症,具有高发病率和死亡率。头部计算机断层扫描(CT)是诊断 SAH 的首选方法之一,通过 CT 显示蛛网膜下腔高密度阴影来确诊。通过基于深度学习的 SAH 分析这些图像,可以降低一般误诊率,特别是降低临床医生的漏诊率。基于深度学习的蛛网膜下腔出血检测主要包括两个任务,即蛛网膜下腔出血分类和蛛网膜下腔出血区域分割。但是,基于卷积神经网络输出的有限预测概率,很难有效地判断模型的可靠性和分类出血。此外,基于深度学习的出血区域分割需要大量预先标记的训练数据,并且大量的网络参数使得模型训练无法达到最优。为了解决现有模型存在的这些问题,本文提出了基于贝叶斯深度学习和神经网络的混合模型来估计不确定性和有效地分类蛛网膜下腔出血。所提出模型的不确定性估计有助于判断模型的预测是否可靠,还可以用于指导临床医生发现被忽视的蛛网膜下腔出血区域。此外,还设计了一种师生机制的深度学习模型,用于引入观测不确定性估计,对半监督学习的蛛网膜下腔出血进行训练。观测不确定性估计可以检测 CT 图像中的不确定出血区域,然后选择高可靠性的区域。最后,还可以使用这些未标记的数据进行模型训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f521/8629635/a1e7b093b01b/JHE2021-9639419.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验