Liu Yi, Moore John H, Harbaugh Svetlana, Chavez Jorge, Chou Chia-Fu, Swami Nathan S
Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, Dayton, USA.
Mikrochim Acta. 2021 Dec 2;189(1):4. doi: 10.1007/s00604-021-05109-0.
Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying β-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.
合成生物学方法用于重新构建细菌结构,使其在被目标分析物诱导时表达特定的细胞内因子,正逐渐成为用于环境监测和体内监测的传感模式。为了帮助设计和优化用于传感分析物的细菌结构,需要无裂解的细胞内检测模式,以多重方式监测不同修饰细菌内表达因子的信号水平和动力学,而无需繁琐的表面固定。在此,我们展示了一种基于纳米多孔金的电化学检测系统,该系统通过生物材料氧化还原电容器进行电制造,用于定量在用多巴胺诱导后修饰大肠杆菌结构内表达的β-半乳糖苷酶。这种在微流控平台上的纳米结构介导的氧化还原放大方法允许对悬浮在不同微通道中的不同细菌结构表达的细胞内因子进行多重评估,而无需细胞裂解或固定。由于存在于微通道整个深度的氧化还原介质可以与电极以及每个通道中的大肠杆菌结构相互作用,该平台具有高灵敏度并能够进行多重检测。我们设想其可应用于评估基于合成生物学的方法,以比较在用感兴趣的目标分析物诱导时的特异性、灵敏度和信号响应时间。