Suppr超能文献

使用基于基因表达的机器学习模型预测骨转移

Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models.

作者信息

Albaradei Somayah, Uludag Mahmut, Thafar Maha A, Gojobori Takashi, Essack Magbubah, Gao Xin

机构信息

Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Front Genet. 2021 Nov 10;12:771092. doi: 10.3389/fgene.2021.771092. eCollection 2021.

Abstract

Bone is the most common site of distant metastasis from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Such bone metastases (BM) cause many painful skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with adverse effects on life quality. Many bone-targeting agents developed based on the current understanding of BM onset's molecular mechanisms dull these adverse effects. However, only a few studies investigated potential predictors of high risk for developing BM, despite such knowledge being critical for early interventions to prevent or delay BM. This work proposes a computational network-based pipeline that incorporates a ML/DL component to predict BM development. Based on the proposed pipeline we constructed several machine learning models. The deep neural network (DNN) model exhibited the highest prediction accuracy (AUC of 92.11%) using the top 34 featured genes ranked by betweenness centrality scores. We further used an entirely separate, "external" TCGA dataset to evaluate the robustness of this DNN model and achieved sensitivity of 85%, specificity of 80%, positive predictive value of 78.10%, negative predictive value of 80%, and AUC of 85.78%. The result shows the models' way of learning allowed it to zoom in on the featured genes that provide the added benefit of the model displaying generic capabilities, that is, to predict BM for samples from different primary sites. Furthermore, existing experimental evidence provides confidence that about 50% of the 34 hub genes have BM-related functionality, which suggests that these common genetic markers provide vital insight about BM drivers. These findings may prompt the transformation of such a method into an artificial intelligence (AI) diagnostic tool and direct us towards mechanisms that underlie metastasis to bone events.

摘要

骨是恶性肿瘤远处转移最常见的部位,在乳腺癌和前列腺癌中发生率最高。这种骨转移(BM)会引发许多与骨骼相关的疼痛事件,如严重骨痛、病理性骨折、脊髓压迫和高钙血症,对生活质量产生不利影响。基于目前对BM发病分子机制的理解开发的许多骨靶向药物减轻了这些不良反应。然而,尽管这些知识对于预防或延迟BM的早期干预至关重要,但只有少数研究调查了发生BM的高风险潜在预测因素。这项工作提出了一种基于计算网络的流程,该流程包含一个机器学习/深度学习组件来预测BM的发生。基于所提出的流程,我们构建了几个机器学习模型。深度神经网络(DNN)模型使用中介中心性得分排名前34的特征基因表现出最高的预测准确率(AUC为92.11%)。我们进一步使用一个完全独立的“外部”TCGA数据集来评估这个DNN模型的稳健性,获得了85%的灵敏度、80%的特异性、78.10%的阳性预测值、80%的阴性预测值和85.78%的AUC。结果表明,模型的学习方式使其能够聚焦于那些为模型展示通用能力(即预测来自不同原发部位样本的BM)提供额外优势的特征基因。此外,现有的实验证据表明,34个枢纽基因中约50%具有与BM相关的功能,这表明这些常见的遗传标记为BM驱动因素提供了重要的见解。这些发现可能会促使将这种方法转化为一种人工智能(AI)诊断工具,并引导我们朝着骨转移事件的潜在机制方向前进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2ba/8631472/56bbebe4bd69/fgene-12-771092-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验