Suppr超能文献

基于深度学习的数字全息自动相位展开

Automated phase unwrapping in digital holography with deep learning.

作者信息

Park Seonghwan, Kim Youhyun, Moon Inkyu

机构信息

Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.

出版信息

Biomed Opt Express. 2021 Oct 22;12(11):7064-7081. doi: 10.1364/BOE.440338. eCollection 2021 Nov 1.

Abstract

Digital holography can provide quantitative phase images related to the morphology and content of biological samples. After the numerical image reconstruction, the phase values are limited between -π and π; thus, discontinuity may occur due to the modulo 2π operation. We propose a new deep learning model that can automatically reconstruct unwrapped focused-phase images by combining digital holography and a Pix2Pix generative adversarial network (GAN) for image-to-image translation. Compared with numerical phase unwrapping methods, the proposed GAN model overcomes the difficulty of accurate phase unwrapping due to abrupt phase changes and can perform phase unwrapping at a twice faster rate. We show that the proposed model can generalize well to different types of cell images and has high performance compared to recent U-net models. The proposed method can be useful in observing the morphology and movement of biological cells in real-time applications.

摘要

数字全息术可以提供与生物样本的形态和内容相关的定量相位图像。在进行数值图像重建后,相位值被限制在-π和π之间;因此,由于模2π运算可能会出现不连续性。我们提出了一种新的深度学习模型,该模型通过将数字全息术与用于图像到图像转换的Pix2Pix生成对抗网络(GAN)相结合,能够自动重建展开的聚焦相位图像。与数值相位展开方法相比,所提出的GAN模型克服了由于相位突然变化而导致的精确相位展开的困难,并且可以以快两倍的速度进行相位展开。我们表明,所提出的模型可以很好地推广到不同类型的细胞图像,并且与最近的U-net模型相比具有高性能。所提出的方法在实时应用中观察生物细胞的形态和运动方面可能会很有用。

相似文献

1
Automated phase unwrapping in digital holography with deep learning.基于深度学习的数字全息自动相位展开
Biomed Opt Express. 2021 Oct 22;12(11):7064-7081. doi: 10.1364/BOE.440338. eCollection 2021 Nov 1.

引用本文的文献

本文引用的文献

4
Deep Multi-View Enhancement Hashing for Image Retrieval.用于图像检索的深度多视图增强哈希
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1445-1451. doi: 10.1109/TPAMI.2020.2975798. Epub 2021 Mar 4.
5
Deep learning in holography and coherent imaging.全息术与相干成像中的深度学习
Light Sci Appl. 2019 Sep 11;8:85. doi: 10.1038/s41377-019-0196-0. eCollection 2019.
7
Hierarchical quality-guided phase unwrapping algorithm.分层质量引导相位解缠算法。
Appl Opt. 2019 Jul 1;58(19):5273-5280. doi: 10.1364/AO.58.005273.
8
One-step robust deep learning phase unwrapping.一步稳健深度学习相位展开
Opt Express. 2019 May 13;27(10):15100-15115. doi: 10.1364/OE.27.015100.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验