Kozlovskii Igor, Popov Petr
iMolecule, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
NAR Genom Bioinform. 2021 Nov 26;3(4):lqab111. doi: 10.1093/nargab/lqab111. eCollection 2021 Dec.
Structure-based drug design (SBDD) targeting nucleic acid macromolecules, particularly RNA, is a gaining momentum research direction that already resulted in several FDA-approved compounds. Similar to proteins, one of the critical components in SBDD for RNA is the correct identification of the binding sites for putative drug candidates. RNAs share a common structural organization that, together with the dynamic nature of these molecules, makes it challenging to recognize binding sites for small molecules. Moreover, there is a need for structure-based approaches, as sequence information only does not consider conformation plasticity of nucleic acid macromolecules. Deep learning holds a great promise to resolve binding site detection problem, but requires a large amount of structural data, which is very limited for nucleic acids, compared to proteins. In this study we composed a set of ∼2000 nucleic acid-small molecule structures comprising ∼2500 binding sites, which is ∼40-times larger than previously used one, and demonstrated the first structure-based deep learning approach, BiteNet , to detect binding sites in nucleic acid structures. BiteNet operates with arbitrary nucleic acid complexes, shows the state-of-the-art performance, and can be helpful in the analysis of different conformations and mutant variants, as we demonstrated for HIV-1 TAR RNA and ATP-aptamer case studies.
以核酸大分子,特别是RNA为靶点的基于结构的药物设计(SBDD)是一个正在兴起的研究方向,已经有几种化合物获得了美国食品药品监督管理局(FDA)的批准。与蛋白质类似,RNA的基于结构的药物设计中的关键组成部分之一是正确识别潜在药物候选物的结合位点。RNA具有共同的结构组织,再加上这些分子的动态性质,使得识别小分子的结合位点具有挑战性。此外,需要基于结构的方法,因为仅序列信息无法考虑核酸大分子的构象可塑性。深度学习有望解决结合位点检测问题,但需要大量的结构数据,与蛋白质相比,核酸的结构数据非常有限。在本研究中,我们构建了一组包含约2500个结合位点的约2000个核酸-小分子结构,这比之前使用的结构大了约40倍,并展示了第一种基于结构的深度学习方法BiteNet,用于检测核酸结构中的结合位点。BiteNet可用于任意核酸复合物,展现了最先进的性能,并且在分析不同构象和突变体变体时可能会有所帮助,正如我们在HIV-1 TAR RNA和ATP适配体案例研究中所展示的那样。