Suppr超能文献

从基于事件的时间尺度的皮质层次结构预测语音。

Predicting speech from a cortical hierarchy of event-based time scales.

作者信息

Schmitt Lea-Maria, Erb Julia, Tune Sarah, Rysop Anna U, Hartwigsen Gesa, Obleser Jonas

机构信息

Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.

Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.

出版信息

Sci Adv. 2021 Dec 3;7(49):eabi6070. doi: 10.1126/sciadv.abi6070.

Abstract

How do predictions in the brain incorporate the temporal unfolding of context in our natural environment? We here provide evidence for a neural coding scheme that sparsely updates contextual representations at the boundary of events. This yields a hierarchical, multilayered organization of predictive language comprehension. Training artificial neural networks to predict the next word in a story at five stacked time scales and then using model-based functional magnetic resonance imaging, we observe an event-based “surprisal hierarchy” evolving along a temporoparietal pathway. Along this hierarchy, surprisal at any given time scale gated bottom-up and top-down connectivity to neighboring time scales. In contrast, surprisal derived from continuously updated context influenced temporoparietal activity only at short time scales. Representing context in the form of increasingly coarse events constitutes a network architecture for making predictions that is both computationally efficient and contextually diverse.

摘要

大脑中的预测是如何将我们自然环境中上下文的时间展开纳入其中的?我们在此为一种神经编码方案提供证据,该方案在事件边界处稀疏地更新上下文表征。这产生了一种预测性语言理解的分层、多层组织。通过训练人工神经网络在五个堆叠的时间尺度上预测故事中的下一个单词,然后使用基于模型的功能磁共振成像,我们观察到一种基于事件的“惊奇层次结构”沿着颞顶叶通路演变。沿着这个层次结构,任何给定时间尺度上的惊奇调节与相邻时间尺度的自下而上和自上而下的连接。相比之下,从持续更新的上下文中得出的惊奇仅在短时间尺度上影响颞顶叶活动。以越来越粗略的事件形式表示上下文构成了一种用于进行预测的网络架构,这种架构在计算上既高效又在上下文方面具有多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4d1/8641937/3748c50d20b2/sciadv.abi6070-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验