Suppr超能文献

利用多参数源追踪技术定位城市雨水管网中的非法排放:一种工具盒综合指数的现场验证,用于优先考虑高风险区域。

Locating illicit discharges in storm sewers in urban areas using multi-parameter source tracking: Field validation of a toolbox composite index to prioritize high risk areas.

机构信息

Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.

City of Laval, soutien technique eau et salubrité, service de l'environnement et de l'écocitoyenneté, 480, Boulevard Armand-Frappier, Laval, QC H7V 3Z4, Canada.

出版信息

Sci Total Environ. 2022 Mar 10;811:152060. doi: 10.1016/j.scitotenv.2021.152060. Epub 2021 Nov 30.

Abstract

In urban areas served by separate sewerage systems, illicit connections to the storm drain system from residences or commercial establishments are frequent whether these misconnections were made accidentally or deliberately. As a result, untreated and contaminated wastewater enters into storm sewers leading to pollution of receiving waters and non-compliance with water quality standards. Typical procedures for detecting illicit connections to the storm sewer system are time consuming and expensive, especially in a highly urbanised area. In this study, we investigated the use of human wastewater micropollutants WWMPs (caffeine, theophylline, and carbamazepine) and advanced DNA molecular markers (human specific Bacteroides HF183 and mitochondrial DNA) as anthropogenic tracers in order to assist identifying potential cross connections. Water samples from storm outfalls and storm sewer pipes in three urban subcatchments were collected in dry weather from 2013 to 2018. All samples contained various concentrations of these markers especially HF183, caffeine and theophylline, suggesting that the storm pipe system studied is widely contaminated by sanitary sewers. None of the traditional indicators or markers tested is sufficient alone to determine the origin of fecal pollution. In a highly urbanised area, the combination of at least three specific human markers was needed in order to locate the residential section with likely misconnections. The human specific Bacteroides HF183, and theophylline appeared to be the most effective markers (along with E. coli) of crossconnections, whereas carbamazepine can provide an indication of contamination through sanitary sewer exfiltration. A composite sewer cross-connection index was developed, and eight misconnected houses were identified and corrected. The index approach enables the reduction of false positives that could lead to expensive interventions to identify cross-connected households. The results show the multiparameter source tracking toolbox as an effective method to identify sewer cross connections for sustainable storm water management.

摘要

在采用独立污水排放系统的城市地区,住宅或商业场所与雨水排水系统的非法连接很常见,无论是偶然还是故意造成的。结果,未经处理和污染的废水进入雨水下水道,导致受纳水体受到污染,不符合水质标准。检测雨水下水道系统中非法连接的典型程序既耗时又昂贵,特别是在高度城市化的地区。在这项研究中,我们研究了使用人类废水微污染物(咖啡因、茶碱和卡马西平)和先进的 DNA 分子标记物(人类特异性双歧杆菌 HF183 和线粒体 DNA)作为人为示踪剂,以协助识别潜在的交叉连接。从 2013 年到 2018 年,在三个城市子流域的雨水出水口和雨水下水道管中收集了旱季的水样。所有样品均含有各种浓度的这些标记物,特别是 HF183、咖啡因和茶碱,表明所研究的雨水管道系统受到了卫生下水道的广泛污染。没有一种传统的指标或标记物单独使用足以确定粪便污染的来源。在高度城市化的地区,需要至少三种特定的人类标记物组合才能确定可能存在错误连接的住宅区。人类特异性双歧杆菌 HF183 和茶碱似乎是交叉连接的最有效标记物(与大肠杆菌一起),而卡马西平可以指示通过卫生下水道渗出的污染。开发了一个综合下水道交叉连接指数,并确定了 8 个错误连接的房屋并进行了纠正。指数方法可以减少可能导致昂贵干预措施以识别交叉连接家庭的假阳性。结果表明,多参数源跟踪工具包是一种有效识别下水道交叉连接的方法,有助于实现可持续的雨水管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验