Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, 92093, USA.
Curr Opin Biotechnol. 2022 Apr;74:122-128. doi: 10.1016/j.copbio.2021.11.003. Epub 2021 Nov 30.
Applications for stem cells have ranged from therapeutic interventions to more conventional screening and in vitro modeling, but significant limitations to each is due to the lack of maturity from decades old monolayer protocols. While those methods remain the 'gold standard,' newer three-dimensional methods, when combined with engineered niche, stand to significantly improve cell maturity and enable new applications. Here in three parts, we first discuss past methods, and where and why we believe those methods produced suboptimal myocytes. Second, we note how newer methods are moving the field into an era of cell mechanical, electrical, and biological maturity. Finally, we highlight how these improvements will solve issues of scale and engraftment to yield clinical success. It is our conclusion that only through a combination of diverse cell populations and engineered niche will we create an engineered heart tissue with the maturity and vasculature to integrate successfully into a host.
应用干细胞的范围从治疗干预到更传统的筛选和体外建模,但由于几十年前的单层方案不成熟,每种方法都存在显著的局限性。虽然这些方法仍然是“金标准”,但当与工程化小生境结合使用时,更新的三维方法有望显著提高细胞成熟度并开辟新的应用。在这里,我们分三个部分首先讨论过去的方法,以及我们认为这些方法在哪些方面产生了不理想的心肌细胞,以及为什么会产生不理想的心肌细胞。其次,我们注意到更新的方法如何将该领域推向细胞机械、电学和生物学成熟的新时代。最后,我们强调这些改进将如何解决规模和植入问题,从而取得临床成功。我们的结论是,只有通过多种细胞群体和工程小生境的结合,我们才能创建具有成熟度和脉管系统的工程心脏组织,使其能够成功整合到宿主中。