Suppr超能文献

用于构建人心肌微生理系统的可调导电脱细胞细胞外基质水凝胶。

Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.

Department of Mechanical Engineering, University of Washington, Seattle, WA, 98105, USA.

出版信息

Biomaterials. 2021 May;272:120764. doi: 10.1016/j.biomaterials.2021.120764. Epub 2021 Mar 18.

Abstract

Cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) offer tremendous potential when used to engineer human tissues for drug screening and disease modeling; however, phenotypic immaturity reduces assay reliability when translating in vitro results to clinical studies. To address this, we have developed hybrid hydrogels comprised of decellularized porcine myocardial extracellular matrix (dECM) and reduced graphene oxide (rGO) to provide a more instructive microenvironment for proper cell and tissue development. A tissue-specific protein profile was preserved post-decellularization, and through the modulation of rGO content and degree of reduction, the mechanical and electrical properties of the hydrogels could be tuned. Engineered heart tissues (EHTs) generated using dECM-rGO hydrogel scaffolds and hiPSC-derived cardiomyocytes exhibited significantly increased twitch forces and had increased expression of genes that regulate contractile function. Improvements in various aspects of electrophysiological function, such as calcium-handling, action potential duration, and conduction velocity, were also induced by the hybrid biomaterial. dECM-rGO hydrogels could also be used as a bioink to print cardiac tissues in a high-throughput manner, and these tissues were utilized to assess the proarrhythmic potential of cisapride. Action potential prolongation and beat interval irregularities was observed in dECM-rGO tissues at clinical doses of cisapride, indicating that the enhanced electrophysiological function of these tissues corresponded well with a capability to produce physiologically relevant drug responses.

摘要

由人诱导多能干细胞 (hiPSC) 分化而来的心肌细胞在用于工程化人体组织进行药物筛选和疾病建模时具有巨大的潜力;然而,表型不成熟降低了将体外结果转化为临床研究的可靠性。为了解决这个问题,我们开发了由脱细胞猪心肌细胞外基质 (dECM) 和还原氧化石墨烯 (rGO) 组成的杂交水凝胶,为细胞和组织的正常发育提供了更具指导性的微环境。脱细胞后保留了组织特异性蛋白质谱,并且通过 rGO 含量和还原程度的调节,可以调整水凝胶的机械和电气性能。使用 dECM-rGO 水凝胶支架和 hiPSC 衍生的心肌细胞生成的工程心脏组织 (EHT) 表现出明显增加的抽搐力,并且调节收缩功能的基因表达增加。混合生物材料还可以诱导电生理功能的各个方面的改善,例如钙处理、动作电位持续时间和传导速度。dECM-rGO 水凝胶也可以用作生物墨水以高通量方式打印心脏组织,并且这些组织用于评估 cisapride 的致心律失常潜力。在 cisapride 的临床剂量下,在 dECM-rGO 组织中观察到动作电位延长和搏动间隔不规则,表明这些组织增强的电生理功能与产生生理相关药物反应的能力很好地对应。

相似文献

4
Decellularized Extracellular Matrix for Tissue Engineering (Review).去细胞外基质在组织工程中的应用(综述)。
Sovrem Tekhnologii Med. 2022;14(3):57-68. doi: 10.17691/stm2022.14.3.07. Epub 2022 May 28.
6
Liver click dECM hydrogels for engineering hepatic microenvironments.用于构建肝微环境的肝点击型 dECM 水凝胶。
Acta Biomater. 2024 Sep 1;185:144-160. doi: 10.1016/j.actbio.2024.06.037. Epub 2024 Jul 2.

引用本文的文献

6
Novel Electroactive Therapeutic Platforms for Cardiac Arrhythmia Management.用于心律失常管理的新型电活性治疗平台。
Adv Sci (Weinh). 2025 Jun;12(24):e2500061. doi: 10.1002/advs.202500061. Epub 2025 Feb 14.

本文引用的文献

1
Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue.动物模型的缺点与工程化人类心脏组织的兴起
ACS Biomater Sci Eng. 2017 Sep 11;3(9):1884-1897. doi: 10.1021/acsbiomaterials.6b00662. Epub 2017 Feb 6.
2
KEGG: integrating viruses and cellular organisms.KEGG:整合病毒和细胞生物。
Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551. doi: 10.1093/nar/gkaa970.
4
Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs.用于打印3D心脏结构的金纳米复合生物墨水。
Adv Funct Mater. 2017 Mar 24;27(12). doi: 10.1002/adfm.201605352. Epub 2017 Jan 17.
8
The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials.底物硬度对心肌细胞动作电位的影响
Cell Biochem Biophys. 2016 Dec;74(4):527-535. doi: 10.1007/s12013-016-0758-1. Epub 2016 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验