Suppr超能文献

机器学习方法在临床预测建模中的应用探讨。

A Discussion of Machine Learning Approaches for Clinical Prediction Modeling.

机构信息

Department of Neurosurgery, Stanford University, Stanford, CA, USA.

出版信息

Acta Neurochir Suppl. 2022;134:65-73. doi: 10.1007/978-3-030-85292-4_9.

Abstract

While machine learning has occupied a niche in clinical medicine for decades, continued method development and increased accessibility of medical data have led to broad diversification of approaches. These range from humble regression-based models to more complex artificial neural networks; yet, despite heterogeneity in foundational principles and architecture, the spectrum of machine learning approaches to clinical prediction modeling have invariably led to the development of algorithms advancing our ability to provide optimal care for our patients. In this chapter, we briefly review early machine learning approaches in medicine before delving into common approaches being applied for clinical prediction modeling today. For each, we offer a brief introduction into theory and application with accompanying examples from the medical literature. In doing so, we present a summarized image of the current state of machine learning and some of its many forms in medical predictive modeling.

摘要

虽然机器学习在临床医学中已经占据了一席之地数十年,但持续的方法开发和更多的医疗数据可及性,已经导致方法的广泛多样化。这些方法从基于回归的简单模型到更复杂的人工神经网络都有;然而,尽管在基础原理和架构上存在差异,但用于临床预测建模的机器学习方法的范围始终导致了算法的发展,从而提高了我们为患者提供最佳护理的能力。在本章中,我们将简要回顾医学早期的机器学习方法,然后再深入探讨当今用于临床预测建模的常见方法。对于每一种方法,我们都提供了一个简短的理论和应用介绍,并附有来自医学文献的示例。这样,我们就可以概括地了解机器学习的现状及其在医学预测建模中的多种形式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验