Suppr超能文献

使用机器学习评估胶质母细胞瘤中的代谢标志物:一项系统综述。

Assessing Metabolic Markers in Glioblastoma Using Machine Learning: A Systematic Review.

作者信息

Neil Zachery D, Pierzchajlo Noah, Boyett Candler, Little Olivia, Kuo Cathleen C, Brown Nolan J, Gendreau Julian

机构信息

School of Medicine, Mercer University, Savannah, GA 31404, USA.

Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, NY 14203, USA.

出版信息

Metabolites. 2023 Jan 21;13(2):161. doi: 10.3390/metabo13020161.

Abstract

Glioblastoma (GBM) is a common and deadly brain tumor with late diagnoses and poor prognoses. Machine learning (ML) is an emerging tool that can create highly accurate diagnostic and prognostic prediction models. This paper aimed to systematically search the literature on ML for GBM metabolism and assess recent advancements. A literature search was performed using predetermined search terms. Articles describing the use of an ML algorithm for GBM metabolism were included. Ten studies met the inclusion criteria for analysis: diagnostic (n = 3, 30%), prognostic (n = 6, 60%), or both (n = 1, 10%). Most studies analyzed data from multiple databases, while 50% (n = 5) included additional original samples. At least 2536 data samples were run through an ML algorithm. Twenty-seven ML algorithms were recorded with a mean of 2.8 algorithms per study. Algorithms were supervised (n = 24, 89%), unsupervised (n = 3, 11%), continuous (n = 19, 70%), or categorical (n = 8, 30%). The mean reported accuracy and AUC of ROC were 95.63% and 0.779, respectively. One hundred six metabolic markers were identified, but only EMP3 was reported in multiple studies. Many studies have identified potential biomarkers for GBM diagnosis and prognostication. These algorithms show promise; however, a consensus on even a handful of biomarkers has not yet been made.

摘要

胶质母细胞瘤(GBM)是一种常见且致命的脑肿瘤,诊断较晚且预后较差。机器学习(ML)是一种新兴工具,可创建高度准确的诊断和预后预测模型。本文旨在系统检索有关ML用于GBM代谢的文献,并评估近期进展。使用预先确定的检索词进行文献检索。纳入描述使用ML算法进行GBM代谢的文章。十项研究符合纳入分析标准:诊断性研究(n = 3,30%)、预后性研究(n = 6,60%)或两者兼具的研究(n = 1,10%)。大多数研究分析了来自多个数据库的数据,而50%(n = 5)纳入了额外的原始样本。至少2536个数据样本通过ML算法进行分析。记录了27种ML算法,每项研究平均使用2.8种算法。算法包括监督式(n = 24,89%)、无监督式(n = 3,11%)、连续性(n = 19,70%)或分类式(n = 8,30%)。报告的平均准确率和ROC曲线下面积(AUC)分别为95.63%和0.779。识别出106个代谢标志物,但只有上皮膜蛋白3(EMP3)在多项研究中被报道。许多研究已经识别出GBM诊断和预后的潜在生物标志物。这些算法显示出前景;然而,即使对于少数生物标志物也尚未达成共识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/615e/9958885/62be0b45da53/metabolites-13-00161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验