Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
BMC Plant Biol. 2021 Dec 4;21(1):573. doi: 10.1186/s12870-021-03365-z.
The unicellular red alga Cyanidioschyzon merolae exhibits a very simple cellular and genomic architecture. In addition, procedures for genetic modifications, such as gene targeting by homologous recombination and inducible/repressible gene expression, have been developed. However, only two markers for selecting transformants, uracil synthase (URA) and chloramphenicol acetyltransferase (CAT), are available in this alga. Therefore, manipulation of two or more different chromosomal loci in the same strain in C. merolae is limited.
This study developed a nuclear targeting and transformant selection system using an antibiotics blasticidin S (BS) and the BS deaminase (BSD) selectable marker by homologous recombination in C. merolae. In addition, this study has succeeded in simultaneously modifying two different chromosomal loci by a single-step cotransformation based on the combination of BSD and CAT selectable markers. A C. merolae strain that expresses mitochondrion-targeted mSCARLET (with the BSD marker) and mVENUS (with the CAT marker) from different chromosomal loci was generated with this procedure.
The newly developed BSD selectable marker enables an additional genetic modification to the already generated C. merolae transformants based on the URA or CAT system. Furthermore, the cotransformation system facilitates multiple genetic modifications. These methods and the simple nature of the C. merolae cellular and genomic architecture will facilitate studies on several phenomena common to photosynthetic eukaryotes.
单细胞红藻 Cyanidioschyzon merolae 具有非常简单的细胞和基因组结构。此外,已经开发了遗传修饰程序,例如通过同源重组进行基因靶向和诱导/抑制基因表达。但是,该藻类中仅有两个用于选择转化体的标记物,尿嘧啶合成酶(URA)和氯霉素乙酰转移酶(CAT)。因此,在 C. merolae 中同一菌株中操纵两个或更多不同的染色体位点受到限制。
本研究通过同源重组在 C. merolae 中使用抗生素博来霉素 S(BS)和 BS 脱氨酶(BSD)选择标记物开发了一种核靶向和转化体选择系统。此外,本研究还成功地通过 BSD 和 CAT 选择标记物的组合基于一步共转化同时修饰了两个不同的染色体位点。通过该程序生成了一种表达线粒体靶向 mSCARLET(具有 BSD 标记)和 mVENUS(具有 CAT 标记)的来自不同染色体位点的 C. merolae 菌株。
新开发的 BSD 选择标记物使已经生成的基于 URA 或 CAT 系统的 C. merolae 转化体能够进行其他遗传修饰。此外,共转化系统促进了多种遗传修饰。这些方法以及 C. merolae 细胞和基因组结构的简单性质将促进对光合真核生物中常见的几种现象的研究。