Suppr超能文献

揭示无序蛋白质序列中的非随机二进制模式。

Uncovering Non-random Binary Patterns Within Sequences of Intrinsically Disordered Proteins.

机构信息

Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, MO 63130, USA.

Department of Physics, Washington University in St. Louis, MO 63130, USA.

出版信息

J Mol Biol. 2022 Jan 30;434(2):167373. doi: 10.1016/j.jmb.2021.167373. Epub 2021 Dec 1.

Abstract

Sequence-ensemble relationships of intrinsically disordered proteins (IDPs) are governed by binary patterns such as the linear clustering or mixing of specific residues or residue types with respect to one another. To enable the discovery of potentially important, shared patterns across sequence families, we describe a computational method referred to as NARDINI for Non-random Arrangement of Residues in Disordered Regions Inferred using Numerical Intermixing. This work was partially motivated by the observation that parameters that are currently in use for describing different binary patterns are not interoperable across IDPs of different amino acid compositions and lengths. In NARDINI, we generate an ensemble of scrambled sequences to set up a composition-specific null model for the patterning parameters of interest. We then compute a series of pattern-specific z-scores to quantify how each pattern deviates from a null model for the IDP of interest. The z-scores help in identifying putative non-random linear sequence patterns within an IDP. We demonstrate the use of NARDINI derived z-scores by identifying sequence patterns in three well-studied IDP systems. We also demonstrate how NARDINI can be deployed to study archetypal IDPs across homologs and orthologs. Overall, NARDINI is likely to aid in designing novel IDPs with a view toward engineering new sequence-function relationships or uncovering cryptic ones. We further propose that the z-scores introduced here are likely to be useful for theoretical and computational descriptions of sequence-ensemble relationships across IDPs of different compositions and lengths.

摘要

无规卷曲蛋白 (IDP) 的序列-集合关系受二元模式控制,例如特定残基或残基类型相对于彼此的线性聚类或混合。为了能够在序列家族之间发现潜在重要的、共享的模式,我们描述了一种称为 NARDINI 的计算方法,用于推断使用数值混合的无序区域中残基的非随机排列。这项工作的部分动机是观察到,目前用于描述不同二元模式的参数在不同氨基酸组成和长度的 IDP 之间不可互操作。在 NARDINI 中,我们生成一组混淆序列,为感兴趣的模式参数建立特定于组成的空模型。然后,我们计算一系列特定于模式的 z 分数,以量化每个模式相对于感兴趣的 IDP 的空模型的偏差。z 分数有助于识别 IDP 中潜在的非随机线性序列模式。我们通过在三个研究充分的 IDP 系统中识别序列模式来展示 NARDINI 衍生的 z 分数的用途。我们还展示了如何部署 NARDINI 来研究同源物和直系同源物中的典型 IDP。总体而言,NARDINI 可能有助于设计具有新序列-功能关系或揭示隐藏功能关系的新型 IDP。我们进一步提出,此处引入的 z 分数可能对不同组成和长度的 IDP 的序列-集合关系的理论和计算描述有用。

相似文献

1
Uncovering Non-random Binary Patterns Within Sequences of Intrinsically Disordered Proteins.
J Mol Biol. 2022 Jan 30;434(2):167373. doi: 10.1016/j.jmb.2021.167373. Epub 2021 Dec 1.
2
CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
Biophys J. 2017 Jan 10;112(1):16-21. doi: 10.1016/j.bpj.2016.11.3200.
3
Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence.
Methods Mol Biol. 2020;2141:347-389. doi: 10.1007/978-1-0716-0524-0_18.
5
Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins.
J Comput Aided Mol Des. 2017 May;31(5):453-466. doi: 10.1007/s10822-017-0020-y. Epub 2017 Apr 1.
6
idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R.
PLoS One. 2022 Apr 18;17(4):e0266929. doi: 10.1371/journal.pone.0266929. eCollection 2022.
7
Sequence fingerprints distinguish erroneous from correct predictions of intrinsically disordered protein regions.
J Biomol Struct Dyn. 2018 Dec;36(16):4338-4351. doi: 10.1080/07391102.2017.1415822. Epub 2017 Dec 27.
8
Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins.
J Phys Chem B. 2019 Apr 25;123(16):3462-3474. doi: 10.1021/acs.jpcb.9b02575. Epub 2019 Apr 15.
9
Rules of Physical Mathematics Govern Intrinsically Disordered Proteins.
Annu Rev Biophys. 2022 May 9;51:355-376. doi: 10.1146/annurev-biophys-120221-095357. Epub 2022 Feb 4.
10
Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered Proteins.
J Phys Chem B. 2020 Aug 6;124(31):6709-6720. doi: 10.1021/acs.jpcb.0c04575. Epub 2020 Jul 27.

引用本文的文献

1
Protein Language Model Identifies Disordered, Conserved Motifs Implicated in Phase Separation.
bioRxiv. 2025 Jul 23:2024.12.12.628175. doi: 10.1101/2024.12.12.628175.
3
Structure of the nucleosome-bound human BCL7A.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf273.
5
Prediction of phase-separation propensities of disordered proteins from sequence.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2417920122. doi: 10.1073/pnas.2417920122. Epub 2025 Mar 25.
6
Intrinsically disordered regions as facilitators of the transcription factor target search.
Nat Rev Genet. 2025 Jun;26(6):424-435. doi: 10.1038/s41576-025-00816-3. Epub 2025 Feb 21.
7
Synapsin Condensation is Governed by Sequence-Encoded Molecular Grammars.
J Mol Biol. 2025 Apr 15;437(8):168987. doi: 10.1016/j.jmb.2025.168987. Epub 2025 Feb 11.
8
Decoding phase separation of prion-like domains through data-driven scaling laws.
Elife. 2025 Feb 12;13:RP99068. doi: 10.7554/eLife.99068.
10
Disordered Regions of Condensate-promoting Proteins Have Distinct Molecular Signatures Associated with Cellular Function.
J Mol Biol. 2025 Mar 1;437(5):168953. doi: 10.1016/j.jmb.2025.168953. Epub 2025 Jan 16.

本文引用的文献

1
Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains.
Nat Chem. 2022 Feb;14(2):196-207. doi: 10.1038/s41557-021-00840-w. Epub 2021 Dec 20.
2
Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils.
Biochemistry. 2021 Nov 2;60(43):3213-3222. doi: 10.1021/acs.biochem.1c00501. Epub 2021 Oct 14.
3
Phase separation vs aggregation behavior for model disordered proteins.
J Chem Phys. 2021 Sep 28;155(12):125101. doi: 10.1063/5.0060046.
4
Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26206-26217. doi: 10.1073/pnas.2000761117. Epub 2020 Oct 5.
5
Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
Trends Biochem Sci. 2020 Aug;45(8):668-680. doi: 10.1016/j.tibs.2020.04.011. Epub 2020 May 23.
6
Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins.
J Phys Chem Lett. 2020 May 7;11(9):3408-3415. doi: 10.1021/acs.jpclett.0c00288. Epub 2020 Apr 17.
7
Valence and patterning of aromatic residues determine the phase behavior of prion-like domains.
Science. 2020 Feb 7;367(6478):694-699. doi: 10.1126/science.aaw8653.
8
Regulation of Nearest-Neighbor Cooperative Binding of E. coli SSB Protein to DNA.
Biophys J. 2019 Dec 3;117(11):2120-2140. doi: 10.1016/j.bpj.2019.09.047. Epub 2019 Oct 28.
9
Intrinsically disordered proteins access a range of hysteretic phase separation behaviors.
Sci Adv. 2019 Oct 18;5(10):eaax5177. doi: 10.1126/sciadv.aax5177. eCollection 2019 Oct.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验