Suppr超能文献

MDD-TSVM:一种基于半监督的新型方法,用于使用脑电图信号检测重度抑郁症。

MDD-TSVM: A novel semisupervised-based method for major depressive disorder detection using electroencephalogram signals.

作者信息

Lin Hongtuo, Jian Chufan, Cao Yang, Ma Xiaoguang, Wang Hailiang, Miao Fen, Fan Xiaomao, Yang Jinzhu, Zhao Gansen, Zhou Hui

机构信息

School of Computer Science, South China Normal University, Guangzhou, China.

The State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China; Foshan Graduate School, Northeastern University, Foshan, China.

出版信息

Comput Biol Med. 2022 Jan;140:105039. doi: 10.1016/j.compbiomed.2021.105039. Epub 2021 Nov 25.

Abstract

Major depressive disorder (MDD) is a common mental illness characterized by persistent feeling of depressed mood and loss of interest. It would cause, in a severe case, suicide behaviors. In clinical settings, automatic MDD detection is mainly based on electroencephalogram (EEG) signals with supervised learning techniques. However, supervised-based MDD detection methods encounter two ineviTable bottlenecks: firstly, such methods rely heavily on an EEG training dataset with MDD labels annotated by a physical therapist, leading to subjectivity and high cost; secondly, most of EEG signals are unlabeled in a real scenario. In this paper, a novel semisupervised-based MDD detection method named MDD-TSVM is presented. Specifically, the MDD-TSVM utilizes the semisupervised method of transductive support vector machine (TSVM) as its backbone, further dividing the unlabeled penalty item of the TSVM objective function into two pseudo-labeled penalty items with or without MDD. By such improvement, the MDD-SVM can make full use of labeled and unlabeled datasets as well as alleviate the class imbalance problem. Experiment results showed that our proposed MDD-TSVM achieved F score of 0.85 ± 0.05 and accuracy of 0.89 ± 0.03 on identifying MDD patients, which is superior to the state-of-the-art methods.

摘要

重度抑郁症(MDD)是一种常见的精神疾病,其特征为持续的情绪低落和兴趣丧失。在严重情况下,它会导致自杀行为。在临床环境中,MDD的自动检测主要基于脑电图(EEG)信号,并采用监督学习技术。然而,基于监督的MDD检测方法存在两个不可避免的瓶颈:首先,此类方法严重依赖由物理治疗师标注了MDD标签的EEG训练数据集,这导致主观性和高成本;其次,在实际场景中,大多数EEG信号是未标注的。本文提出了一种名为MDD-TSVM的基于半监督的新型MDD检测方法。具体而言,MDD-TSVM利用转导支持向量机(TSVM)的半监督方法作为其主干,进一步将TSVM目标函数的未标注惩罚项分为两个带有或不带有MDD的伪标注惩罚项。通过这种改进,MDD-TSVM可以充分利用标注和未标注数据集,并缓解类别不平衡问题。实验结果表明,我们提出的MDD-TSVM在识别MDD患者方面的F分数为0.85±0.05,准确率为0.89±0.03,优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验