Suppr超能文献

使用机器学习预测隐匿性高血压和隐匿性未控制高血压

Prediction of Masked Hypertension and Masked Uncontrolled Hypertension Using Machine Learning.

作者信息

Hung Ming-Hui, Shih Ling-Chieh, Wang Yu-Ching, Leu Hsin-Bang, Huang Po-Hsun, Wu Tao-Cheng, Lin Shing-Jong, Pan Wen-Harn, Chen Jaw-Wen, Huang Chin-Chou

机构信息

School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.

出版信息

Front Cardiovasc Med. 2021 Nov 19;8:778306. doi: 10.3389/fcvm.2021.778306. eCollection 2021.

Abstract

This study aimed to develop machine learning-based prediction models to predict masked hypertension and masked uncontrolled hypertension using the clinical characteristics of patients at a single outpatient visit. Data were derived from two cohorts in Taiwan. The first cohort included 970 hypertensive patients recruited from six medical centers between 2004 and 2005, which were split into a training set ( = 679), a validation set ( = 146), and a test set ( = 145) for model development and internal validation. The second cohort included 416 hypertensive patients recruited from a single medical center between 2012 and 2020, which was used for external validation. We used 33 clinical characteristics as candidate variables to develop models based on logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGboost), and artificial neural network (ANN). The four models featured high sensitivity and high negative predictive value (NPV) in internal validation (sensitivity = 0.914-1.000; NPV = 0.853-1.000) and external validation (sensitivity = 0.950-1.000; NPV = 0.875-1.000). The RF, XGboost, and ANN models showed much higher area under the receiver operating characteristic curve (AUC) (0.799-0.851 in internal validation, 0.672-0.837 in external validation) than the LR model. Among the models, the RF model, composed of 6 predictor variables, had the best overall performance in both internal and external validation (AUC = 0.851 and 0.837; sensitivity = 1.000 and 1.000; specificity = 0.609 and 0.580; NPV = 1.000 and 1.000; accuracy = 0.766 and 0.721, respectively). An effective machine learning-based predictive model that requires data from a single clinic visit may help to identify masked hypertension and masked uncontrolled hypertension.

摘要

本研究旨在开发基于机器学习的预测模型,利用患者单次门诊就诊时的临床特征来预测隐匿性高血压和隐匿性未控制高血压。数据来自台湾的两个队列。第一个队列包括2004年至2005年期间从六个医疗中心招募的970例高血压患者,这些患者被分为训练集(n = 679)、验证集(n = 146)和测试集(n = 145),用于模型开发和内部验证。第二个队列包括2012年至2020年期间从一个医疗中心招募的416例高血压患者,用于外部验证。我们使用33个临床特征作为候选变量,基于逻辑回归(LR)、随机森林(RF)、极端梯度提升(XGboost)和人工神经网络(ANN)开发模型。这四个模型在内部验证(敏感性 = 0.914 - 1.000;阴性预测值 = 0.853 - 1.000)和外部验证(敏感性 = 0.950 - 1.000;阴性预测值 = 0.875 - 1.000)中具有高敏感性和高阴性预测值。随机森林、极端梯度提升和人工神经网络模型在受试者工作特征曲线下面积(AUC)方面(内部验证中为0.799 - 0.851,外部验证中为0.672 - 0.837)比逻辑回归模型高得多。在这些模型中,由6个预测变量组成的随机森林模型在内部和外部验证中总体表现最佳(AUC分别为0.851和0.837;敏感性分别为1.000和1.000;特异性分别为0.609和0.580;阴性预测值分别为1.000和1.000;准确率分别为0.766和0.721)。一种有效的基于机器学习的预测模型,只需单次门诊就诊的数据,可能有助于识别隐匿性高血压和隐匿性未控制高血压。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验