文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MLb-LDLr:一种预测错义变异致病性的机器学习模型。

MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of Missense Variants.

作者信息

Larrea-Sebal Asier, Benito-Vicente Asier, Fernandez-Higuero José A, Jebari-Benslaiman Shifa, Galicia-Garcia Unai, Uribe Kepa B, Cenarro Ana, Ostolaza Helena, Civeira Fernando, Arrasate Sonia, González-Díaz Humberto, Martín César

机构信息

Fundación Biofísica Bizkaia, Leioa, Spain.

Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.

出版信息

JACC Basic Transl Sci. 2021 Nov 22;6(11):815-827. doi: 10.1016/j.jacbts.2021.08.009. eCollection 2021 Nov.


DOI:10.1016/j.jacbts.2021.08.009
PMID:34869944
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8617597/
Abstract

Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor () gene constitute the major cause of FH, and the high number of mutations already described in the makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of missense variants with specificity of 92.5% and sensitivity of 91.6%.

摘要

未经治疗的家族性高胆固醇血症(FH)会导致动脉粥样硬化和早期心血管疾病。低密度脂蛋白受体()基因突变是FH的主要病因,该基因中已描述的大量突变使得有必要进行级联筛查或体外功能表征以做出明确诊断。实施具有高预测能力的软件是评估基因变异致病性的一种有价值的方法,有助于FH疾病的早期诊断和管理。这项工作提供了一个可靠的机器学习模型,以92.5%的特异性和91.6%的敏感性准确预测基因错义变异的致病性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/6c4e5a9c0483/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/f568e8523b86/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/805961ac86d0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/27d1b3f2de67/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/ef2a28361089/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/b0195fe34077/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/6c4e5a9c0483/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/f568e8523b86/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/805961ac86d0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/27d1b3f2de67/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/ef2a28361089/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/b0195fe34077/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/8617597/6c4e5a9c0483/gr5.jpg

相似文献

[1]
MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of Missense Variants.

JACC Basic Transl Sci. 2021-11-22

[2]
Systematic prediction of familial hypercholesterolemia caused by low-density lipoprotein receptor missense mutations.

Atherosclerosis. 2018-12-15

[3]
Cellular and functional evaluation of LDLR missense variants reported in hypercholesterolemic patients demonstrates their hypomorphic impacts on trafficking and LDL internalization.

Front Cell Dev Biol. 2024-7-24

[4]
Novel LDLR variants in patients with familial hypercholesterolemia: in silico analysis as a tool to predict pathogenic variants in children and their families.

Ann Hum Genet. 2013-9

[5]
OptiMo-LDLr: An Integrated In Silico Model with Enhanced Predictive Power for LDL Receptor Variants, Unraveling Hot Spot Pathogenic Residues.

Adv Sci (Weinh). 2024-4

[6]
Clinical characterization and mutation spectrum of German patients with familial hypercholesterolemia.

Atherosclerosis. 2016-8-26

[7]
DIAgnosis and Management Of familial hypercholesterolemia in a Nationwide Design (DIAMOND-FH): Prevalence in Switzerland, clinical characteristics and the diagnostic value of clinical scores.

Atherosclerosis. 2018-10

[8]
Two Novel Disease-Causing Mutations in the LDLR of Familial Hypercholesterolemia.

Front Genet. 2021-12-14

[9]
Spectrum of low-density lipoprotein receptor (LDLR) mutations in a cohort of Sri Lankan patients with familial hypercholesterolemia - a preliminary report.

Lipids Health Dis. 2018-5-2

[10]
Validation of LDLr Activity as a Tool to Improve Genetic Diagnosis of Familial Hypercholesterolemia: A Retrospective on Functional Characterization of LDLr Variants.

Int J Mol Sci. 2018-6-5

引用本文的文献

[1]
Large-Scale Functional Characterization of Low-Density Lipoprotein Receptor Gene Variants Improves Risk Assessment in Cardiovascular Disease.

JACC Basic Transl Sci. 2025-2

[2]
Familial Hypercholesterolemia: From Clinical Suspicion to Novel Treatments.

Rev Cardiovasc Med. 2023-11-9

[3]
MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense Gene Variants.

Int J Mol Sci. 2024-3-2

[4]
Effect of mixed meal replacement of soybean meal on growth performance, nutrient apparent digestibility, and gut microbiota of finishing pigs.

Front Vet Sci. 2024-2-1

[5]
OptiMo-LDLr: An Integrated In Silico Model with Enhanced Predictive Power for LDL Receptor Variants, Unraveling Hot Spot Pathogenic Residues.

Adv Sci (Weinh). 2024-4

[6]
Predictive Modeling and Structure Analysis of Genetic Variants in Familial Hypercholesterolemia: Implications for Diagnosis and Protein Interaction Studies.

Curr Atheroscler Rep. 2023-11

[7]
Applications of machine learning in familial hypercholesterolemia.

Front Cardiovasc Med. 2023-9-26

[8]
Novel Tools for Comprehensive Functional Analysis of LDLR (Low-Density Lipoprotein Receptor) Variants.

Int J Mol Sci. 2023-7-14

[9]
Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis.

Int J Mol Sci. 2023-2-6

[10]
Continuous Bayesian variant interpretation accounts for incomplete penetrance among Mendelian cardiac channelopathies.

Genet Med. 2023-3

本文引用的文献

[1]
Diagnostic yield of sequencing familial hypercholesterolemia genes in individuals with primary hypercholesterolemia.

Rev Esp Cardiol (Engl Ed). 2021-8

[2]
Mutation type classification and pathogenicity assignment of sixteen missense variants located in the EGF-precursor homology domain of the LDLR.

Sci Rep. 2020-2-3

[3]
Systematic prediction of familial hypercholesterolemia caused by low-density lipoprotein receptor missense mutations.

Atherosclerosis. 2018-12-15

[4]
Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease.

Int J Mol Sci. 2018-11-1

[5]
CADD: predicting the deleteriousness of variants throughout the human genome.

Nucleic Acids Res. 2019-1-8

[6]
Deep learning in biomedicine.

Nat Biotechnol. 2018-9-6

[7]
Validation of LDLr Activity as a Tool to Improve Genetic Diagnosis of Familial Hypercholesterolemia: A Retrospective on Functional Characterization of LDLr Variants.

Int J Mol Sci. 2018-6-5

[8]
Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis.

Genet Med. 2017-10-26

[9]
ClinVar: improving access to variant interpretations and supporting evidence.

Nucleic Acids Res. 2018-1-4

[10]
Cascade Screening for Familial Hypercholesterolemia and the Use of Genetic Testing.

JAMA. 2017-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索