Hiep Nguyen T, Quang Quach K, Nhan Mai T V, Hoang Khanh V, Nguyen Cuong Q, Hoi Bui D, Hieu Nguyen N
Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam.
RSC Adv. 2025 May 30;15(23):18114-18122. doi: 10.1039/d5ra01319d. eCollection 2025 May 29.
In this work, two-dimensional Janus α-AuXY (X, Y = S/Se/Te) monolayers are designed and their structural stabilities and fundamental properties are investigated using first-principle calculations. We find that the three α-AuSSe, α-AuSTe, and α-AuSeTe structures have high energetic, thermodynamic and mechanical stabilities, indicating that experimental fabrication is feasible. In addition, the proposed systems have anisotropic Young's modulus and Poisson's ratio values. According to the electronic structure calculations, the α-AuXY monolayers are indirect semiconductors with appropriate band gaps for sunlight absorption of 1.06 to 1.33 eV at the Perdew-Burke-Ernzerhof level. The calculation results from the Heyd-Scuseria-Ernzerhof method for the α-AuXY monolayers also show indirect band gap semiconductor behavior. Moreover, we utilize the deformation potential technique to analyze the electron and hole mobilities of the α-AuXY materials to determine their transport properties. Interestingly, α-AuSSe shows an impressive hole carrier mobility of 6258.42 cm V s along the -axis. α-AuSTe and α-AuSeTe also have high electron mobilities ( ) of 642.21/584.96 cm V s and 676.56/760.39 cm V s in the / directions, respectively. In view of the remarkable electronic and transport properties, the α-AuXY materials are expected to be promising Janus materials for next-generation optical, electronic, and photovoltaic devices.
在这项工作中,设计了二维Janus α-AuXY(X、Y = S/Se/Te)单层,并使用第一性原理计算研究了它们的结构稳定性和基本性质。我们发现,α-AuSSe、α-AuSTe和α-AuSeTe这三种结构具有高能量、热力学和机械稳定性,表明实验制备是可行的。此外,所提出的体系具有各向异性的杨氏模量和泊松比值。根据电子结构计算,在Perdew-Burke-Ernzerhof水平下,α-AuXY单层是间接半导体,具有1.06至1.33 eV的合适带隙用于吸收太阳光。使用Heyd-Scuseria-Ernzerhof方法对α-AuXY单层的计算结果也显示出间接带隙半导体行为。此外,我们利用形变势技术分析α-AuXY材料的电子和空穴迁移率,以确定它们的输运性质。有趣的是,α-AuSSe沿y轴显示出令人印象深刻的6258.42 cm² V⁻¹ s⁻¹的空穴载流子迁移率。α-AuSTe和α-AuSeTe在x/y方向上也分别具有642.21/584.96 cm² V⁻¹ s⁻¹和676.56/760.39 cm² V⁻¹ s⁻¹的高电子迁移率(μe)。鉴于其卓越的电子和输运性质,α-AuXY材料有望成为用于下一代光学、电子和光伏器件的有前途的Janus材料。