Gupta Kunal, Sekhar Nitesh, Vigneault Davis M, Scott Anderson R, Colvert Brendan, Craine Amanda, Raghavan Adhithi, Contijoch Francisco J
Departments of Computer Science Engineering (K.G., N.S.), Bioengineering (D.M.V., A.R.S., B.C., A.C., A.R., F.J.C.), and Radiology (F.J.C.), University of California, San Diego, 9500 Gilman Dr, MC 0412, La Jolla, CA 92093; and Department of Internal Medicine, Scripps Mercy Hospital, San Diego, Calif (D.M.V.).
Radiol Artif Intell. 2021 Sep 29;3(6):e210036. doi: 10.1148/ryai.2021210036. eCollection 2021 Nov.
To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images.
Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.
Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).
Octree-based representations can reduce the memory footprint and improve segmentation border accuracy. CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.
评估八叉树表示法和基于八叉树的卷积神经网络(CNN)是否能提高三维图像的分割准确性。
回顾性评估2012年6月至2018年6月期间对100例患者(平均年龄67岁±17[标准差];60例男性)进行的心脏CT血管造影检查,这些检查对舒张末期和收缩末期心脏阶段的左心室(LV)和左心房(LA)血池进行了语义分割。将八叉树表示法的图像质量(均方根误差[RMSE])和分割保真度(全局Dice系数和边界Dice系数)指标与一系列内存占用情况下的空间下采样进行比较。使用五折交叉验证来训练基于八叉树的CNN以及在四个图像压缩级别或空间下采样的情况下进行空间下采样的CNN。将基于八叉树的CNN(OctNet)的语义分割性能与具有空间下采样的U-Net的性能进行比较。
八叉树提供了高图像和分割保真度(RMSE中位数为1.34 HU;LV Dice系数为0.970;LV边界Dice系数为0.843),同时内存占用减少(减少87.5%)。空间下采样到相同的内存占用时,数据保真度较低(RMSE中位数为12.96 HU;LV Dice系数为0.852;LV边界Dice系数为0.310)。与具有空间下采样的U-Net中的最高性能相比,OctNet分割提高了边界分割Dice系数(LV为0.612;LA为0.636)(Dice系数:LV为0.579;LA为0.592)。
基于八叉树的表示法可以减少内存占用并提高分割边界的准确性。CT、心脏、分割、监督学习、卷积神经网络(CNN)、深度学习算法、机器学习算法©RSNA,2021。