Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
ACS Nano. 2021 Dec 28;15(12):20430-20441. doi: 10.1021/acsnano.1c08861. Epub 2021 Dec 6.
Precise engineering of DNA structures is of growing interest to solve challenging problems in biomolecular applications and beyond. The introduction of single-stranded DNA (ssDNA) into the DNA structure can play a pivotal role in providing high controllability of critical structural features. Herein, we present a computational model of ssDNA with structural applications to harness its characteristics. The nonlinear properties of nucleotide gaps are systematically characterized to construct a structural model of the ssDNA across length scales with the incorporation of a finite element framework. The proposed method shows the programmability of structural bending, twisting, and persistence length by implementing the ssDNA in various DNA structures with experimental validation. Our results have significant implications for DNA nanotechnology in expanding the boundary of design and analysis of structural shape and stiffness.
精确设计 DNA 结构在解决生物分子应用等领域的挑战性问题方面具有越来越大的吸引力。在 DNA 结构中引入单链 DNA(ssDNA)可以在提供关键结构特征的高度可控性方面发挥关键作用。本文介绍了一种具有结构应用的 ssDNA 计算模型,以利用其特性。系统地描述了核苷酸间隙的非线性特性,以构建一个包含有限元框架的 ssDNA 跨尺度结构模型。通过在各种 DNA 结构中实现 ssDNA 并进行实验验证,该方法展示了结构弯曲、扭曲和持久长度的可编程性。我们的研究结果对 DNA 纳米技术具有重要意义,可以拓展结构形状和刚度的设计和分析边界。