Department of Mechanical and Aerospace Engineering , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Korea.
Institute of Advanced Machines and Design , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Korea.
ACS Nano. 2019 Jul 23;13(7):8329-8336. doi: 10.1021/acsnano.9b03770. Epub 2019 Jul 10.
As scaffolded DNA origami enables the construction of diverse DNA nanostructures with predefined shapes, precise modulation of their mechanical stiffness remains challenging. We demonstrate a modular design method to widely and precisely control the mechanical flexibility of scaffolded DNA origami nanostructures while maintaining their overall structural integrity and geometric characteristics. Individually engineered defects that are short single-stranded DNA (ssDNA) gaps could reduce up to 70% of the bending stiffness of DNA origami constructs with different cross-sectional shapes. We further developed a computational analysis platform predicting the bending stiffness of a defect-engineered DNA nanostructure quickly during the design process, to offer an efficient way of designing various DNA constructs with required mechanical stiffness in a desired shape for a targeted function.
由于支架 DNA 折纸术能够构建具有预定形状的多样化 DNA 纳米结构,因此精确调节其机械刚度仍然具有挑战性。我们展示了一种模块化设计方法,可以广泛而精确地控制支架 DNA 折纸纳米结构的机械柔韧性,同时保持其整体结构完整性和几何特征。单独设计的缺陷(短单链 DNA (ssDNA) 缺口)可以将不同横截面形状的 DNA 折纸结构的弯曲刚度降低多达 70%。我们进一步开发了一种计算分析平台,在设计过程中可以快速预测缺陷工程 DNA 纳米结构的弯曲刚度,为设计具有所需机械刚度和所需形状的各种 DNA 结构提供了一种有效的方法,以实现特定功能。