Suppr超能文献

COVID-19 监测数据质量问题:一项全国连续病例系列研究。

COVID-19 surveillance data quality issues: a national consecutive case series.

机构信息

Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal

Centre for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal.

出版信息

BMJ Open. 2021 Dec 6;11(12):e047623. doi: 10.1136/bmjopen-2020-047623.

Abstract

OBJECTIVES

High-quality data are crucial for guiding decision-making and practising evidence-based healthcare, especially if previous knowledge is lacking. Nevertheless, data quality frailties have been exposed worldwide during the current COVID-19 pandemic. Focusing on a major Portuguese epidemiological surveillance dataset, our study aims to assess COVID-19 data quality issues and suggest possible solutions.

SETTINGS

On 27 April 2020, the Portuguese Directorate-General of Health (DGS) made available a dataset (DGSApril) for researchers, upon request. On 4 August, an updated dataset (DGSAugust) was also obtained.

PARTICIPANTS

All COVID-19-confirmed cases notified through the medical component of National System for Epidemiological Surveillance until end of June.

PRIMARY AND SECONDARY OUTCOME MEASURES

Data completeness and consistency.

RESULTS

DGSAugust has not followed the data format and variables as DGSApril and a significant number of missing data and inconsistencies were found (eg, 4075 cases from the DGSApril were apparently not included in DGSAugust). Several variables also showed a low degree of completeness and/or changed their values from one dataset to another (eg, the variable 'underlying conditions' had more than half of cases showing different information between datasets). There were also significant inconsistencies between the number of cases and deaths due to COVID-19 shown in DGSAugust and by the DGS reports publicly provided daily.

CONCLUSIONS

Important quality issues of the Portuguese COVID-19 surveillance datasets were described. These issues can limit surveillance data usability to inform good decisions and perform useful research. Major improvements in surveillance datasets are therefore urgently needed-for example, simplification of data entry processes, constant monitoring of data, and increased training and awareness of healthcare providers-as low data quality may lead to a deficient pandemic control.

摘要

目的

高质量的数据对于指导决策和实施循证医疗至关重要,尤其是在缺乏先前知识的情况下。然而,在当前的 COVID-19 大流行期间,世界各地都暴露出数据质量的脆弱性。本研究聚焦于葡萄牙一个主要的流行病学监测数据集,旨在评估 COVID-19 数据质量问题,并提出可能的解决方案。

背景

2020 年 4 月 27 日,葡萄牙卫生总局(DGS)根据请求向研究人员提供了一个数据集(DGSApril)。2020 年 8 月 4 日,还获得了一个更新的数据集(DGSAugust)。

参与者

截至 6 月底,通过国家流行病学监测系统医疗部分报告的所有 COVID-19 确诊病例。

主要和次要结果

数据完整性和一致性。

结果

DGSAugust 没有遵循 DGSApril 的数据格式和变量,并且发现了大量缺失数据和不一致(例如,DGSApril 中的 4075 例病例显然未包含在 DGSAugust 中)。几个变量的完整性也较低,或者从一个数据集到另一个数据集的值发生了变化(例如,“潜在条件”变量显示两个数据集之间有一半以上的病例信息不同)。DGSAugust 中报告的 COVID-19 病例数和死亡人数与 DGS 每日公开提供的报告之间也存在显著不一致。

结论

描述了葡萄牙 COVID-19 监测数据集的重要质量问题。这些问题可能会限制监测数据的可用性,从而无法做出正确决策和进行有用的研究。因此,迫切需要对监测数据集进行重大改进,例如简化数据输入流程、对数据进行持续监测、增加对医疗保健提供者的培训和意识,因为低数据质量可能导致大流行控制不力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a3/8649880/8d75723bd2dd/bmjopen-2020-047623f01.jpg

相似文献

1
COVID-19 surveillance data quality issues: a national consecutive case series.
BMJ Open. 2021 Dec 6;11(12):e047623. doi: 10.1136/bmjopen-2020-047623.
2
Timeliness and completeness of laboratory-based surveillance of COVID-19 cases in England.
Public Health. 2021 May;194:163-166. doi: 10.1016/j.puhe.2021.03.012. Epub 2021 Apr 1.
3
COVID-19 Case Surveillance: Trends in Person-Level Case Data Completeness, United States, April 5-September 30, 2020.
Public Health Rep. 2021 Jul-Aug;136(4):466-474. doi: 10.1177/00333549211006973. Epub 2021 Mar 31.
4
Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis.
J Med Internet Res. 2021 Feb 3;23(2):e25799. doi: 10.2196/25799.
5
A Reminder of Skin Cancer During the COVID-19 Pandemic.
Acta Dermatovenerol Croat. 2021 Apr;291(1):58.
7
Clinical trials and the COVID-19 pandemic.
Hell J Nucl Med. 2020 Jan-Apr;23(1):4-5. doi: 10.1967/s002449912014.
8
SARS-CoV-2 Surveillance in the Middle East and North Africa: Longitudinal Trend Analysis.
J Med Internet Res. 2021 Jan 15;23(1):e25830. doi: 10.2196/25830.
10
Doubled mortality rate during the COVID-19 pandemic in Italy: quantifying what is not captured by surveillance.
Public Health. 2021 Jan;190:108-115. doi: 10.1016/j.puhe.2020.11.016. Epub 2020 Nov 30.

引用本文的文献

2
Empowering open data sharing for social good: a privacy-aware approach.
Sci Data. 2025 Feb 12;12(1):248. doi: 10.1038/s41597-025-04506-x.
4
Public health surveillance perspectives from provincial COVID-19 experiences, South Africa 2021.
Jamba. 2024 Oct 17;16(1):1625. doi: 10.4102/jamba.v16i1.1625. eCollection 2024.
5
Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates.
PLoS Comput Biol. 2024 Apr 16;20(4):e1012021. doi: 10.1371/journal.pcbi.1012021. eCollection 2024 Apr.
8
COVID-19 outbreaks analysis in the Valencian Region of Spain in the prelude of the third wave.
Front Public Health. 2022 Nov 17;10:1010124. doi: 10.3389/fpubh.2022.1010124. eCollection 2022.

本文引用的文献

3
Methodological challenges of analysing COVID-19 data during the pandemic.
BMC Med Res Methodol. 2020 Apr 14;20(1):81. doi: 10.1186/s12874-020-00972-6.
4
Open access epidemiological data from the COVID-19 outbreak.
Lancet Infect Dis. 2020 May;20(5):534. doi: 10.1016/S1473-3099(20)30119-5. Epub 2020 Feb 19.
5
Evaluation of malaria surveillance system in Kano State, Nigeria, 2013-2016.
Infect Dis Poverty. 2020 Feb 10;9(1):15. doi: 10.1186/s40249-020-0629-2.
7
Evaluation of the influenza-like illness surveillance system in Tunisia, 2012-2015.
BMC Public Health. 2019 Jun 6;19(1):694. doi: 10.1186/s12889-019-7035-3.
8
How decision makers can use quantitative approaches to guide outbreak responses.
Philos Trans R Soc Lond B Biol Sci. 2019 Jul 8;374(1776):20180365. doi: 10.1098/rstb.2018.0365.
10
[Multimorbidity in Portugal: Results from The First National Health Examination Survey].
Acta Med Port. 2019 Feb 1;32(1):30-37. doi: 10.20344/amp.11227.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验