Suppr超能文献

CT 图像中肾皮质和髓质的自动分割:一项多站点评估研究。

Automated Segmentation of Kidney Cortex and Medulla in CT Images: A Multisite Evaluation Study.

机构信息

Department of Radiology, Mayo Clinic, Rochester, Minnesota.

Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.

出版信息

J Am Soc Nephrol. 2022 Feb;33(2):420-430. doi: 10.1681/ASN.2021030404. Epub 2021 Dec 7.

Abstract

BACKGROUND

In kidney transplantation, a contrast CT scan is obtained in the donor candidate to detect subclinical pathology in the kidney. Recent work from the Aging Kidney Anatomy study has characterized kidney, cortex, and medulla volumes using a manual image-processing tool. However, this technique is time consuming and impractical for clinical care, and thus, these measurements are not obtained during donor evaluations. This study proposes a fully automated segmentation approach for measuring kidney, cortex, and medulla volumes.

METHODS

A total of 1930 contrast-enhanced CT exams with reference standard manual segmentations from one institution were used to develop the algorithm. A convolutional neural network model was trained (=1238) and validated (=306), and then evaluated in a hold-out test set of reference standard segmentations (=386). After the initial evaluation, the algorithm was further tested on datasets originating from two external sites (=1226).

RESULTS

The automated model was found to perform on par with manual segmentation, with errors similar to interobserver variability with manual segmentation. Compared with the reference standard, the automated approach achieved a Dice similarity metric of 0.94 (right cortex), 0.90 (right medulla), 0.94 (left cortex), and 0.90 (left medulla) in the test set. Similar performance was observed when the algorithm was applied on the two external datasets.

CONCLUSIONS

A fully automated approach for measuring cortex and medullary volumes in CT images of the kidneys has been established. This method may prove useful for a wide range of clinical applications.

摘要

背景

在肾移植中,对供体候选人进行对比 CT 扫描,以检测肾脏的亚临床病变。最近,“衰老肾脏解剖学研究”使用手动图像处理工具对肾脏、皮质和髓质体积进行了特征描述。然而,这种技术耗时且不适合临床护理,因此,在供体评估期间不会获得这些测量值。本研究提出了一种全自动分割方法,用于测量肾脏、皮质和髓质的体积。

方法

使用来自一个机构的总共 1930 次增强 CT 检查和参考标准手动分割来开发算法。训练了一个卷积神经网络模型(=1238)并进行了验证(=306),然后在参考标准分割的独立测试集(=386)中进行了评估。在初始评估后,该算法还在来自两个外部站点的数据集(=1226)上进行了进一步测试。

结果

自动模型的表现与手动分割相当,其错误与手动分割的观察者间变异性相似。与参考标准相比,该自动方法在测试集中获得了右侧皮质的 Dice 相似性度量为 0.94、右侧髓质为 0.90、左侧皮质为 0.94 和左侧髓质为 0.90。当该算法应用于两个外部数据集时,也观察到了类似的性能。

结论

已经建立了一种全自动方法来测量 CT 图像中肾脏的皮质和髓质体积。该方法可能在广泛的临床应用中非常有用。

相似文献

引用本文的文献

3
The boundaries of normal kidney tissue for biomedical research.生物医学研究中正常肾组织的边界。
Curr Opin Nephrol Hypertens. 2025 May 1;34(3):218-223. doi: 10.1097/MNH.0000000000001069. Epub 2025 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验