Suppr超能文献

CT 图像上肾皮质自动分割方法:在肾捐献者中的评估。

An automatic method for renal cortex segmentation on CT images: evaluation on kidney donors.

机构信息

Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Building 10, Room 1C515, Bethesda, MD 20892-1182, USA.

出版信息

Acad Radiol. 2012 May;19(5):562-70. doi: 10.1016/j.acra.2012.01.005. Epub 2012 Feb 15.

Abstract

RATIONALE AND OBJECTIVES

The aims of this study were to develop and validate an automated method to segment the renal cortex on contrast-enhanced abdominal computed tomographic images from kidney donors and to track cortex volume change after donation.

MATERIALS AND METHODS

A three-dimensional fully automated renal cortex segmentation method was developed and validated on 37 arterial phase computed tomographic data sets (27 patients, 10 of whom underwent two computed tomographic scans before and after nephrectomy) using leave-one-out strategy. Two expert interpreters manually segmented the cortex slice by slice, and linear regression analysis and Bland-Altman plots were used to compare automated and manual segmentation. The true-positive and false-positive volume fractions were also calculated to evaluate the accuracy of the proposed method. Cortex volume changes in 10 subjects were also calculated.

RESULTS

The linear regression analysis results showed that the automated and manual segmentation methods had strong correlations, with Pearson's correlations of 0.9529, 0.9309, 0.9283, and 0.9124 between intraobserver variation, interobserver variation, automated and user 1, and automated and user 2, respectively (P < .001 for all analyses). The Bland-Altman plots for cortex segmentation also showed that the automated and manual methods had agreeable segmentation. The mean volume increase of the cortex for the 10 subjects was 35.1 ± 13.2% (P < .01 by paired t test). The overall true-positive and false-positive volume fractions for cortex segmentation were 90.15 ± 3.11% and 0.85 ± 0.05%. With the proposed automated method, the time for cortex segmentation was reduced from 20 minutes for manual segmentation to 2 minutes.

CONCLUSIONS

The proposed method was accurate and efficient and can replace the current subjective and time-consuming manual procedure. The computer measurement confirms the volume of renal cortex increases after kidney donation.

摘要

背景和目的

本研究旨在开发和验证一种自动方法,以分割供体腹部增强 CT 图像的肾皮质,并跟踪捐献后的皮质体积变化。

材料和方法

使用留一法,在 37 个动脉期 CT 数据集(27 例患者,其中 10 例在肾切除术前和术后进行了两次 CT 扫描)上开发和验证了一种三维全自动肾皮质分割方法。两位专家口译员逐片手动分割皮质,并用线性回归分析和 Bland-Altman 图比较自动和手动分割。还计算了真阳性和假阳性体积分数,以评估所提出方法的准确性。还计算了 10 个受试者的皮质体积变化。

结果

线性回归分析结果表明,自动和手动分割方法具有很强的相关性,观察者内变异、观察者间变异、自动和用户 1、自动和用户 2 之间的 Pearson 相关系数分别为 0.9529、0.9309、0.9283 和 0.9124(所有分析 P<0.001)。皮质分割的 Bland-Altman 图也表明,自动和手动方法具有可接受的分割。10 个受试者皮质体积的平均增加量为 35.1±13.2%(配对 t 检验 P<0.01)。皮质分割的总体真阳性和假阳性体积分数分别为 90.15±3.11%和 0.85±0.05%。使用所提出的自动方法,皮质分割的时间从手动分割的 20 分钟减少到 2 分钟。

结论

所提出的方法准确高效,可以替代当前主观且耗时的手动过程。计算机测量证实肾脏捐献后肾皮质体积增加。

相似文献

引用本文的文献

8
Progress in Fully Automated Abdominal CT Interpretation.全自动化腹部CT解读的进展
AJR Am J Roentgenol. 2016 Jul;207(1):67-79. doi: 10.2214/AJR.15.15996. Epub 2016 Apr 21.
10
X-ray phase-contrast tomography of renal ischemia-reperfusion damage.肾缺血再灌注损伤的X射线相衬断层扫描
PLoS One. 2014 Oct 9;9(10):e109562. doi: 10.1371/journal.pone.0109562. eCollection 2014.

本文引用的文献

8
Graph cuts framework for kidney segmentation with prior shape constraints.具有先验形状约束的肾脏分割图割框架。
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):384-92. doi: 10.1007/978-3-540-75757-3_47.
9
A framework for evaluating image segmentation algorithms.一种评估图像分割算法的框架。
Comput Med Imaging Graph. 2006 Mar;30(2):75-87. doi: 10.1016/j.compmedimag.2005.12.001.
10
Computer-aided kidney segmentation on abdominal CT images.腹部CT图像上的计算机辅助肾脏分割
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):59-65. doi: 10.1109/titb.2005.855561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验