KU Leuven, Department of Imaging and Pathology, Division of Medical Physics, Herestraat 49, 3000, Leuven, Belgium.
UZ Leuven, Department of Radiology, Herestraat 49, 3000, Leuven, Belgium.
Eur Radiol Exp. 2024 Oct 9;8(1):110. doi: 10.1186/s41747-024-00507-4.
Renal quantitative measurements are important descriptors for assessing kidney function. We developed a deep learning-based method for automated kidney measurements from computed tomography (CT) images.
The study datasets comprised potential kidney donors (n = 88), both contrast-enhanced (Dataset 1 CE) and noncontrast (Dataset 1 NC) CT scans, and test sets of contrast-enhanced cases (Test set 2, n = 18), cases from a photon-counting (PC)CT scanner reconstructed at 60 and 190 keV (Test set 3 PCCT, n = 15), and low-dose cases (Test set 4, n = 8), which were retrospectively analyzed to train, validate, and test two networks for kidney segmentation and subsequent measurements. Segmentation performance was evaluated using the Dice similarity coefficient (DSC). The quantitative measurements' effectiveness was compared to manual annotations using the intraclass correlation coefficient (ICC).
The contrast-enhanced and noncontrast models demonstrated excellent reliability in renal segmentation with DSC of 0.95 (Test set 1 CE), 0.94 (Test set 2), 0.92 (Test set 3 PCCT) and 0.94 (Test set 1 NC), 0.92 (Test set 3 PCCT), and 0.93 (Test set 4). Volume estimation was accurate with mean volume errors of 4%, 3%, 6% mL (contrast test sets) and 4%, 5%, 7% mL (noncontrast test sets). Renal axes measurements (length, width, and thickness) had ICC values greater than 0.90 (p < 0.001) for all test sets, supported by narrow 95% confidence intervals.
Two deep learning networks were shown to derive quantitative measurements from contrast-enhanced and noncontrast renal CT imaging at the human performance level.
Deep learning-based networks can automatically obtain renal clinical descriptors from both noncontrast and contrast-enhanced CT images. When healthy subjects comprise the training cohort, careful consideration is required during model adaptation, especially in scenarios involving unhealthy kidneys. This creates an opportunity for improved clinical decision-making without labor-intensive manual effort.
Trained 3D UNet models quantify renal measurements from contrast and noncontrast CT. The models performed interchangeably to the manual annotator and to each other. The models can provide expert-level, quantitative, accurate, and rapid renal measurements.
肾脏定量测量对于评估肾功能非常重要。我们开发了一种基于深度学习的方法,用于从 CT 图像自动测量肾脏。
研究数据集包括潜在的肾脏捐献者(n=88),包括增强对比(数据集 1 CE)和非增强(数据集 1 NC)CT 扫描,以及增强对比的测试集(测试集 2,n=18),来自光子计数(PC)CT 扫描仪的重建在 60 和 190 keV(测试集 3 PCCT,n=15)和低剂量病例(测试集 4,n=8),这些病例是为了训练、验证和测试两个用于肾脏分割和后续测量的网络而进行回顾性分析的。使用 Dice 相似系数(DSC)评估分割性能。使用组内相关系数(ICC)比较定量测量与手动注释的有效性。
增强和非增强模型在肾脏分割方面表现出极好的可靠性,DSC 分别为 0.95(测试集 1 CE)、0.94(测试集 2)、0.92(测试集 3 PCCT)和 0.94(测试集 1 NC)、0.92(测试集 3 PCCT)和 0.93(测试集 4)。体积估计非常准确,平均体积误差为 4%、3%、6% mL(增强测试集)和 4%、5%、7% mL(非增强测试集)。所有测试集的肾脏轴测量(长度、宽度和厚度)的 ICC 值均大于 0.90(p<0.001),置信区间较窄。
两种深度学习网络可以从增强和非增强的人体肾脏 CT 成像中获得定量测量值。当健康受试者组成训练队列时,在模型适应过程中需要仔细考虑,特别是在涉及不健康肾脏的情况下。这为在不进行劳动密集型手动工作的情况下改善临床决策提供了机会。
训练有素的 3D UNet 模型可从对比和非对比 CT 测量肾脏。模型可以相互间以及与手动注释者一样,进行定量测量。模型可以提供专家级、准确、快速的肾脏测量。