Moriarity Daniel P, Ellman Lauren M, Coe Christopher L, Olino Thomas M, Alloy Lauren B
Temple University, USA.
McLean Hospital, Harvard Medical School.
Brain Behav Immun Health. 2021 Nov 17;18:100391. doi: 10.1016/j.bbih.2021.100391. eCollection 2021 Dec.
Most research testing the association between inflammation and health outcomes (e.g., heart disease, diabetes, depression) has focused on individual proteins; however, some studies have used summed composites of inflammatory markers without first investigating dimensionality. Using two different samples (MIDUS-2: N = 1255 adults, MIDUS-R: N = 863 adults), this study investigates the dimensionality of eight inflammatory proteins (C-reactive protein (CRP), interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), fibrinogen, E-selectin, and intercellular adhesion molecule (ICAM)-1) and compared the resulting factor structure to a) an "a priori"/tau-equivalent factor structure in which all inflammatory proteins equally load onto a single dimension (comparable to the summed composites) and b) proteins modeled individually (i.e., no latent variable) in terms of model fit, replicability, reliability, and their associations with health outcomes. An exploratory factor analysis indicated a two-factor structure (Factor 1: CRP and fibrinogen; Factor 2: IL-8 and IL-10) in MIDUS-2 and was replicated in MIDUS-R. Results did not clearly indicate whether the empirically-identified factor structure or the individual proteins modeled without a latent variable had superior model fit, but both strongly outperformed the "a priori"/tau-equivalent structure (which did not achieve acceptable model fit in any models). Modeling the empirically-identified factors and individual proteins (without a latent factor) as outcomes of medical diagnoses resulted in comparable conclusions. However, modeling individual proteins resulted in findings more robust to correction for multiple comparisons despite more conservative adjustments. Further, reliability for all latent variables was poor. These results indicate that modeling inflammation as a unidimensional construct equally associated with all available proteins does not fit the data well. Instead, individual inflammatory proteins or, potentially (if empirically supported and biologically-plausible) empirically-identified inflammatory factors should be used in accordance with theory.
大多数检验炎症与健康结果(如心脏病、糖尿病、抑郁症)之间关联的研究都聚焦于单个蛋白质;然而,一些研究使用了炎症标志物的综合指标,却未先对维度进行研究。本研究使用两个不同样本(MIDUS - 2:N = 1255名成年人,MIDUS - R:N = 863名成年人),调查了八种炎症蛋白(C反应蛋白(CRP)、白细胞介素(IL)-6、IL - 8、IL - 10、肿瘤坏死因子-α(TNF - α)、纤维蛋白原、E选择素和细胞间黏附分子(ICAM)-1)的维度,并将所得因子结构与以下两者进行比较:a)一种“先验”/tau等效因子结构,其中所有炎症蛋白均同等程度地加载到单一维度上(类似于综合指标);b)就模型拟合、可重复性、可靠性及其与健康结果的关联而言,单独建模的蛋白质(即无潜在变量)。探索性因子分析表明,MIDUS - 2中存在两因子结构(因子1:CRP和纤维蛋白原;因子2:IL - 8和IL - 10),并在MIDUS - R中得到重复验证。结果并未明确表明,根据经验确定的因子结构或无潜在变量的单独建模蛋白质在模型拟合方面是否更优,但两者均明显优于“先验”/tau等效结构(该结构在任何模型中均未达到可接受的模型拟合)。将根据经验确定的因子和单独的蛋白质(无潜在因子)建模为医学诊断的结果得出了类似结论。然而,尽管调整更为保守,但对单独蛋白质建模得出的结果在多重比较校正方面更为稳健。此外,所有潜在变量的可靠性都很差。这些结果表明,将炎症建模为与所有可用蛋白质同等相关的单维结构并不能很好地拟合数据。相反,应根据理论使用单独的炎症蛋白,或者(如果得到经验支持且生物学上合理)潜在地使用根据经验确定的炎症因子。