Suppr超能文献

移动键盘退格键速率的数字表型及其与心境障碍症状的关联:算法的开发与验证。

Digital Phenotypes of Mobile Keyboard Backspace Rates and Their Associations With Symptoms of Mood Disorder: Algorithm Development and Validation.

机构信息

Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States.

Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States.

出版信息

J Med Internet Res. 2024 Oct 29;26:e51269. doi: 10.2196/51269.

Abstract

BACKGROUND

Passive sensing through smartphone keyboard data can be used to identify and monitor symptoms of mood disorders with low participant burden. Behavioral phenotyping based on mobile keystroke data can aid in clinical decision-making and provide insights into the individual symptoms of mood disorders.

OBJECTIVE

This study aims to derive digital phenotypes based on smartphone keyboard backspace use among 128 community adults across 2948 observations using a Bayesian mixture model.

METHODS

Eligible study participants completed a virtual screening visit where all eligible participants were instructed to download the custom-built BiAffect smartphone keyboard (University of Illinois). The BiAffect keyboard unobtrusively captures keystroke dynamics. All eligible and consenting participants were instructed to use this keyboard exclusively for up to 4 weeks of the study in real life, and participants' compliance was checked at the 2 follow-up visits at week 2 and week 4. As part of the research protocol, every study participant underwent evaluations by a study psychiatrist during each visit.

RESULTS

We found that derived phenotypes were associated with not only the diagnoses and severity of depression and mania but also specific individual symptoms. Using a linear mixed-effects model with random intercepts accounting for the nested data structure from daily data, the backspace rates on the continuous scale did not differ between participants in the healthy control and in the mood disorders groups (P=.11). The 3-class model had mean backspace rates of 0.112, 0.180, and 0.268, respectively, with a SD of 0.048. In total, 3 classes, respectively, were estimated to comprise 37.5% (n=47), 54.4% (n=72), and 8.1% (n=9) of the sample. We grouped individuals into Low, Medium, and High backspace rate groups. Individuals with unipolar mood disorder were predominantly in the Medium group (n=54), with some in the Low group (n=27) and a few in the High group (n=6). The Medium group, compared with the Low group, had significantly higher ratings of depression (b=2.32, P=.008). The High group was not associated with ratings of depression with (P=.88) or without (P=.27) adjustment for medication and diagnoses. The High group, compared with the Low group, was associated with both nonzero ratings (b=1.91, P=.02) and higher ratings of mania (b=1.46, P<.001). The High group, compared with the Low group, showed significantly higher odds of elevated mood (P=.03), motor activity (P=.04), and irritability (P<.05).

CONCLUSIONS

This study demonstrates the promise of mobile typing kinematics in mood disorder research and practice. Monitoring a single mobile typing kinematic feature, that is, backspace rates, through passive sensing imposes a low burden on the participants. Based on real-life keystroke data, our derived digital phenotypes from this single feature can be useful for researchers and practitioners to distinguish between individuals with and those without mood disorder symptoms.

摘要

背景

通过智能手机键盘数据进行被动感应,可以在低参与者负担的情况下识别和监测情绪障碍的症状。基于移动按键数据的行为表型可以帮助临床决策,并深入了解情绪障碍的个体症状。

目的

本研究旨在使用贝叶斯混合模型,从 128 名社区成年人的 2948 次观察中,基于智能手机键盘退格键的使用情况得出数字表型。

方法

符合条件的研究参与者完成了一次虚拟筛查访问,所有符合条件的参与者都被指示下载定制的 BiAffect 智能手机键盘(伊利诺伊大学)。BiAffect 键盘可在不引人注目的情况下捕获按键动态。所有符合条件并同意的参与者都被指示在研究的 4 周内,在现实生活中独家使用该键盘,并且在第 2 周和第 4 周的 2 次随访中检查参与者的依从性。作为研究方案的一部分,每位研究参与者在每次就诊时都由研究精神科医生进行评估。

结果

我们发现,衍生的表型不仅与抑郁和躁狂的诊断和严重程度相关,而且与特定的个体症状相关。使用具有随机截距的线性混合效应模型来解释日常数据的嵌套数据结构,在健康对照组和情绪障碍组的参与者中,连续量表上的退格率没有差异(P=.11)。3 类模型的退格率均值分别为 0.112、0.180 和 0.268,标准差为 0.048。总共估计有 3 个类别,分别由 37.5%(n=47)、54.4%(n=72)和 8.1%(n=9)的样本组成。我们将个体分为低、中、高退格率组。单相情绪障碍患者主要在中组(n=54),少数在低组(n=27),少数在高组(n=6)。与低组相比,中组的抑郁评分明显更高(b=2.32,P=.008)。与调整药物和诊断无关(P=.88)或有关(P=.27)时,高组与抑郁评分无关。与低组相比,高组与非零评分(b=1.91,P=.02)和更高的躁狂评分(b=1.46,P<.001)均相关。与低组相比,高组表现出更高的情绪升高(P=.03)、运动活动(P=.04)和易怒(P<.05)的几率。

结论

本研究证明了移动打字运动学在情绪障碍研究和实践中的潜力。通过被动感应监测单个移动打字运动学特征,即退格率,对参与者的负担较低。基于现实生活中的按键数据,我们从这个单一特征得出的衍生数字表型可以帮助研究人员和从业者区分有和没有情绪障碍症状的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c0d/11558221/545d603f39b4/jmir_v26i1e51269_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验