Suppr超能文献

靶向聚电解质复合胶束治疗体内血管并发症。

Targeted polyelectrolyte complex micelles treat vascular complications in vivo.

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637.

Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2114842118.

Abstract

Vascular disease is a leading cause of morbidity and mortality in the United States and globally. Pathological vascular remodeling, such as atherosclerosis and stenosis, largely develop at arterial sites of curvature, branching, and bifurcation, where disturbed blood flow activates vascular endothelium. Current pharmacological treatments of vascular complications principally target systemic risk factors. Improvements are needed. We previously devised a targeted polyelectrolyte complex micelle to deliver therapeutic nucleotides to inflamed endothelium in vitro by displaying the peptide VHPKQHR targeting vascular cell adhesion molecule 1 (VCAM-1) on the periphery of the micelle. This paper explores whether this targeted nanomedicine strategy effectively treats vascular complications in vivo. Disturbed flow-induced microRNA-92a (miR-92a) has been linked to endothelial dysfunction. We have engineered a transgenic line ( / ) establishing that selective miR-92a overexpression in adult vascular endothelium causally promotes atherosclerosis in mice. We tested the therapeutic effectiveness of the VCAM-1-targeting polyelectrolyte complex micelles to deliver miR-92a inhibitors and treat pathological vascular remodeling in vivo. VCAM-1-targeting micelles preferentially delivered miRNA inhibitors to inflamed endothelial cells in vitro and in vivo. The therapeutic effectiveness of anti-miR-92a therapy in treating atherosclerosis and stenosis in mice is markedly enhanced by the VCAM-1-targeting polyelectrolyte complex micelles. These results demonstrate a proof of concept to devise polyelectrolyte complex micelle-based targeted nanomedicine approaches treating vascular complications in vivo.

摘要

血管疾病是美国和全球发病率和死亡率的主要原因。病理性血管重构,如动脉粥样硬化和狭窄,主要发生在动脉弯曲、分支和分叉部位,血流紊乱会激活血管内皮细胞。目前血管并发症的药物治疗主要针对全身危险因素。需要改进。我们之前设计了一种靶向聚电解质复合胶束,通过在胶束的外围展示靶向血管细胞粘附分子 1 (VCAM-1) 的肽 VHPKQHR,将治疗性核苷酸递送到体外炎症内皮细胞。本文探讨了这种靶向纳米医学策略是否能有效治疗体内血管并发症。已发现紊乱的血流诱导 microRNA-92a (miR-92a) 与血管内皮功能障碍有关。我们已经构建了一个转基因系 ( / ),该系在成年血管内皮细胞中选择性过表达 miR-92a 会导致 小鼠发生动脉粥样硬化。我们测试了靶向 VCAM-1 的聚电解质复合胶束递送 miR-92a 抑制剂并治疗体内病理性血管重构的治疗效果。靶向 VCAM-1 的胶束在体外和体内优先将 miRNA 抑制剂递送到炎症内皮细胞。靶向 VCAM-1 的聚电解质复合胶束显著增强了抗 miR-92a 治疗治疗 小鼠动脉粥样硬化和狭窄的疗效。这些结果证明了设计基于聚电解质复合胶束的靶向纳米医学方法治疗体内血管并发症的概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a965/8685925/14eb6da1a2f9/pnas.2114842118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验