The University of Texas MD Anderson Cancer Center, Houston, TX.
Palantir Technologies, Denver, CO.
JCO Clin Cancer Inform. 2023 Mar;7:e2200123. doi: 10.1200/CCI.22.00123.
Clinical management of patients receiving immune checkpoint inhibitors (ICIs) could be informed using accurate predictive tools to identify patients at risk of short-term acute care utilization (ACU). We used routinely collected data to develop and assess machine learning (ML) algorithms to predict unplanned ACU within 90 days of ICI treatment initiation.
We used aggregated electronic health record data from 7,960 patients receiving ICI treatments to train and assess eight ML algorithms. We developed the models using pre-SARS-COV-19 COVID-19 data generated between January 2016 and February 2020. We validated our algorithms using data collected between March 2020 and June 2022 (peri-COVID-19 sample). We assessed performance using area under the receiver operating characteristic curves (AUROC), sensitivity, specificity, and calibration plots. We derived intuitive explanations of predictions using variable importance and Shapley additive explanation analyses. We assessed the marginal performance of ML models compared with that of univariate and multivariate logistic regression (LR) models.
Most algorithms significantly outperformed the univariate and multivariate LR models. The extreme gradient boosting trees (XGBT) algorithm demonstrated the best overall performance (AUROC, 0.70; sensitivity, 0.53; specificity, 0.74) on the peri-COVID-19 sample. The algorithm performance was stable across both pre- and peri-COVID-19 samples, as well as ICI regimen and cancer groups. Type of ICI agents, oxygen saturation, diastolic blood pressure, albumin level, platelet count, immature granulocytes, absolute monocyte, chloride level, red cell distribution width, and alcohol intake were the top 10 key predictors used by the XGBT algorithm.
Machine learning algorithms trained using routinely collected data outperformed traditional statistical models when predicting 90-day ACU. The XGBT algorithm has the potential to identify high-ACU risk patients and enable preventive interventions to avoid ACU.
通过使用准确的预测工具来识别有短期急性护理利用(ACU)风险的患者,为接受免疫检查点抑制剂(ICI)治疗的患者提供临床管理。我们使用常规收集的数据来开发和评估机器学习(ML)算法,以预测 ICI 治疗开始后 90 天内的计划外 ACU。
我们使用来自 7960 名接受 ICI 治疗的患者的聚合电子健康记录数据来训练和评估 8 种 ML 算法。我们使用 2016 年 1 月至 2020 年 2 月之间生成的 SARS-COV-19 前 COVID-19 数据开发模型。我们使用 2020 年 3 月至 2022 年 6 月之间收集的数据(COVID-19 前样本)验证算法。我们使用接收者操作特征曲线(AUROC)下面积、敏感性、特异性和校准图来评估性能。我们使用变量重要性和 Shapley 加法解释分析来解释预测的直观解释。我们评估了 ML 模型与单变量和多变量逻辑回归(LR)模型的边际性能。
大多数算法的表现明显优于单变量和多变量 LR 模型。在 COVID-19 前样本中,极端梯度增强树(XGBT)算法表现出最佳的整体性能(AUROC,0.70;敏感性,0.53;特异性,0.74)。该算法在 COVID-19 前后样本以及 ICI 方案和癌症组中表现稳定。ICI 药物类型、氧饱和度、舒张压、白蛋白水平、血小板计数、不成熟粒细胞、绝对单核细胞、氯水平、红细胞分布宽度和酒精摄入量是 XGBT 算法使用的前 10 个关键预测因子。
使用常规收集的数据训练的机器学习算法在预测 90 天 ACU 方面优于传统统计模型。XGBT 算法有可能识别出高 ACU 风险的患者,并通过预防干预来避免 ACU。