Yoosefzadeh-Najafabadi Mohsen, Torabi Sepideh, Tulpan Dan, Rajcan Istvan, Eskandari Milad
Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada.
Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
Front Plant Sci. 2021 Nov 22;12:777028. doi: 10.3389/fpls.2021.777028. eCollection 2021.
In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant phenomics and genomics approaches for generating reliable large datasets. However, selecting an appropriate data integration and analysis method to improve the efficiency of phenome-phenome and phenome-genome association studies is still a bottleneck. This study proposes a hyperspectral wide association study (HypWAS) approach as a phenome-phenome association analysis through a hierarchical data integration strategy to estimate the prediction power of hyperspectral reflectance bands in predicting soybean seed yield. Using HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and near-infrared regions were identified significantly associated with seed yield. The phenome-genome association analysis of each tested hyperspectral reflectance band was performed using two conventional genome-wide association studies (GWAS) methods and a machine learning mediated GWAS based on the support vector regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the physiological background of the tested hyperspectral reflectance bands were detected, supported by the functional annotation of candidate gene analyses. The results of this study have indicated the advantages of using hierarchical data integration strategy and advanced mathematical methods coupled with phenome-phenome and phenome-genome association analyses for a better understanding of the biology and genetic backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The identified yield-related hyperspectral reflectance bands using HypWAS can be used as indirect selection criteria for selecting superior genotypes with improved yield genetic gains in large breeding populations.
结合大数据分析方法,植物组学技术为科学家提供了经济高效且前景广阔的工具,用于利用大型育种群体发现复杂农艺性状的遗传结构。近年来,在生成可靠的大型数据集的植物表型组学和基因组学方法方面取得了重大进展。然而,选择合适的数据整合和分析方法以提高表型 - 表型和表型 - 基因组关联研究的效率仍然是一个瓶颈。本研究提出了一种高光谱全基因组关联研究(HypWAS)方法,通过分层数据整合策略进行表型 - 表型关联分析,以评估高光谱反射波段在预测大豆种子产量方面的预测能力。使用HypWAS,在可见光、红边和近红外区域识别出五个与种子产量显著相关的重要高光谱反射波段。使用两种传统的全基因组关联研究(GWAS)方法和基于支持向量回归(SVR)方法的机器学习介导的GWAS,对每个测试的高光谱反射波段进行表型 - 基因组关联分析。使用SVR介导的GWAS,检测到更多具有测试高光谱反射波段生理背景的相关QTL,这得到了候选基因分析功能注释的支持。本研究结果表明,使用分层数据整合策略和先进的数学方法结合表型 - 表型和表型 - 基因组关联分析,有助于更好地理解影响大豆产量形成的高光谱反射波段的生物学和遗传背景。使用HypWAS识别出的与产量相关的高光谱反射波段可作为间接选择标准,用于在大型育种群体中选择具有更高产量遗传增益的优良基因型。