Suppr超能文献

一种基于心电图的新生儿癫痫发作检测器的广义线性模型。

A Generalized Linear Model for an ECG-based Neonatal Seizure Detector.

作者信息

Frassineti Lorenzo, Manfredi Claudia, Olmi Benedetta, Lanata Antonio

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:471-474. doi: 10.1109/EMBC46164.2021.9630841.

Abstract

Seizures represent one of the most challenging issues of the neonatal period's neurological emergency. Due to the heterogeneity of etiologies and clinical characteristics, seizures recognition is tricky and time-consuming. Currently, the gold standard for seizure diagnosis is Electroencephalography (EEG), whose correct interpretation requires a highly specialized team. Thus, to speed up and facilitate the detection of ictal events, several EEG-based Neonatal Seizure Detectors (NSDs) have been proposed in the literature. Research is currently exploiting more simple and less invasive approaches, such as Electrocardiography (ECG). This work aims at developing an ECG-based NSD using a Generalized Linear Model with features extracted from Heart Rate Variability (HRV) measures as input. The method is validated on a public dataset of 52 subjects (33 with seizures and 19 seizure-free). Achieved encouraging results show 69% Concatenated Area Under the ROC Curve (AUCcc) for the automatic detection of windows with seizure events, confirming that HRV features can be useful to catch the cardio-regulatory system alterations due to neonatal seizure events, particularly those related to Hypoxic-Ischaemic Encephalopathies. Thus, results suggest the use of ECG-based NSDs in clinical practice, especially when a timely diagnosis is needed and EEG technologies are not readily available.Clinical Relevance- An ECG-based Neonatal Seizure Detector could be a valid support to speed up the diagnosis of neonatal seizures, especially when EEG technologies for infants' neurological assessment are not readily available.

摘要

癫痫发作是新生儿期神经急症中最具挑战性的问题之一。由于病因和临床特征的异质性,癫痫发作的识别既棘手又耗时。目前,癫痫诊断的金标准是脑电图(EEG),其正确解读需要一个高度专业化的团队。因此,为了加快并便于检测发作事件,文献中提出了几种基于脑电图的新生儿癫痫检测器(NSD)。目前的研究正在探索更简单、侵入性更小的方法,如心电图(ECG)。这项工作旨在开发一种基于心电图的新生儿癫痫检测器,使用广义线性模型,将从心率变异性(HRV)测量中提取的特征作为输入。该方法在一个包含52名受试者的公共数据集上得到了验证(33名有癫痫发作,19名无癫痫发作)。取得的令人鼓舞的结果表明,对于癫痫发作事件窗口的自动检测,ROC曲线下的串联面积(AUCcc)为69%,证实了HRV特征有助于捕捉新生儿癫痫发作事件引起的心脏调节系统改变,特别是那些与缺氧缺血性脑病相关的改变。因此,研究结果表明在临床实践中可以使用基于心电图的新生儿癫痫检测器,尤其是在需要及时诊断而脑电图技术无法立即使用的情况下。临床相关性——基于心电图的新生儿癫痫检测器可以有效地加快新生儿癫痫的诊断,特别是在婴儿神经评估的脑电图技术无法立即使用时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验