Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2347-2352. doi: 10.1109/EMBC46164.2021.9630453.
Determining when a patient can be discharged from a care setting is critical to optimize the utilization and delivery of timely care. Furthermore, timely discharge can lead to better clinical outcomes by effectively mitigating the prolonged length of stay in a care environment. This paper presents a novel algorithm for the prediction of likelihood of patient discharge within the next 24 or 48 hours from acute or critical care environments on a daily basis. Continuous patient monitoring and health data obtained from acute hospital at home environment (n=303 patients) and a critical care unit environment (n=9,520 patients) are retrospectively used to train, validate and test numerous machine learning models for dynamic daily predictions of patients discharge. In the acute hospital at home environment, the area under the receiver operating characteristic (AUROC) curve performance of a top XGBoost model was 0.816 ± 0.025 and 0.758 ± 0.029 for daily discharge prediction within 24 hours and 48 hours respectively. Similar independent prediction models from the critical care environment resulted in relatively a lower AUROC for likewise predicting daily patient discharge. Overall, the results demonstrate the efficacy and utility of our novel algorithm for dynamic predictions of daily patient discharge in both acute- and critical care healthcare settings.
确定患者何时可以离开护理环境对于优化及时护理的利用和提供至关重要。此外,及时出院可以通过有效缩短患者在护理环境中的住院时间,从而改善临床结果。本文提出了一种新颖的算法,用于预测患者在未来 24 或 48 小时内从急性或重症监护环境中出院的可能性,每天进行预测。连续的患者监测和从急性医院居家环境(n=303 名患者)和重症监护病房环境(n=9520 名患者)中获得的健康数据,用于训练、验证和测试许多机器学习模型,以实现患者出院的动态每日预测。在急性医院居家环境中,XGBoost 模型的最佳 XGBoost 模型的接收者操作特征(AUROC)曲线性能在 24 小时和 48 小时内的每日出院预测中分别为 0.816±0.025 和 0.758±0.029。来自重症监护病房环境的类似独立预测模型在预测每日患者出院方面的 AUROC 相对较低。总体而言,结果表明我们的新颖算法在急性和重症监护医疗保健环境中进行每日患者出院动态预测的有效性和实用性。