Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4072-4078. doi: 10.1109/EMBC46164.2021.9629581.
In this work, we develop a patch-level training approach and a task-driven intensity-based augmentation method for deep-learning-based segmentation of motion-corrected perfusion cardiac magnetic resonance imaging (MRI) datasets. Further, the proposed method generates an image-based uncertainty map thanks to a novel spatial sliding-window approach used during patch-level training, hence allowing for uncertainty quantification. Using the quantified uncertainty, we detect the out-of-distribution test data instances so that the end-user can be alerted that the test data is not suitable for the trained network. This feature has the potential to enable a more reliable integration of the proposed deep learning-based framework into clinical practice. We test our approach on external MRI data acquired using a different acquisition protocol to demonstrate the robustness of our performance to variations in pulse-sequence parameters. The presented results further demonstrate that our deep-learning image segmentation approach trained with the proposed data-augmentation technique incorporating spatiotemporal (2D+time) patches is superior to the state-of-the-art 2D approach in terms of generalization performance.
在这项工作中,我们开发了一种基于补丁级别的训练方法和一种基于任务的强度增强方法,用于基于深度学习的运动校正灌注心脏磁共振成像(MRI)数据集分割。此外,所提出的方法通过在补丁级别的训练过程中使用新颖的空间滑动窗口方法生成基于图像的不确定性映射,从而实现不确定性量化。利用量化的不确定性,我们检测到离群测试数据实例,以便最终用户能够收到警报,表明测试数据不适合训练后的网络。该功能有可能使基于深度学习的框架更可靠地集成到临床实践中。我们在使用不同采集协议获取的外部 MRI 数据上测试了我们的方法,以证明我们的性能对脉冲序列参数变化的鲁棒性。所呈现的结果进一步表明,我们的基于深度学习的图像分割方法,经过带有时空(2D+时间)补丁的拟议数据增强技术训练,在泛化性能方面优于最先进的 2D 方法。