Suppr超能文献

横断面循环阈值反映了马达加斯加 COVID-19 的流行动态。

Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar.

机构信息

Virology Unit, Institut Pasteur de Madagascar, Madagascar.

Department of Ecology and Evolution, University of Chicago, United States.

出版信息

Epidemics. 2022 Mar;38:100533. doi: 10.1016/j.epidem.2021.100533. Epub 2021 Nov 29.

Abstract

As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-C value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on C value, suggesting that C value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level C distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional C distributions across three regions in Madagascar. We find that C-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of C values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting.

摘要

作为马达加斯加发热疾病的国家参考实验室,我们处理了 2020 年 3 月至 9 月间第一波 COVID-19 疫情的样本。我们拟合了来自我们 RT-qPCR 平台的循环阈值 (C) 值数据的广义加性模型,证明了高病毒载量、低 C 值感染的峰值与实时从公共报告的发病率数据和我们自己实验室检测数据回溯到三个行政区域的估计的流行率峰值在时间上是一致的。我们还证明了从感染开始到 C 值的时间长短对 C 值有统计学意义的影响,这表明 C 值可以作为个体在感染轨迹中采样时所处阶段的生物标志物。作为扩展,在给定时间点的人群水平 C 分布可用于估计人群水平的流行病学动态。我们通过采用最近开发的嵌套建模方法来说明这一概念,该方法将宿主内病毒动力学模型嵌入到人群水平的易感-暴露-感染-恢复 (SEIR) 框架中,从马达加斯加三个地区的 C 分布的横截面中通过机械方式估计流行率增长。我们发现,C 值衍生的流行率增长估计值略先于从发病率数据得出的估计值,这表明在监测和病例报告方面存在延迟。我们的研究结果表明,C 值的公开报告可为低监测环境中的流行病学推断提供重要资源,使在病例报告有限的地区能够预测即将到来的发病率高峰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/976d/8628610/2a7e40429700/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验