Suppr超能文献

使用肿瘤突变负担影像组学生物标志物预测晚期非小细胞肺癌对免疫治疗的反应。

Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker.

机构信息

School of Electronic Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China.

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

J Immunother Cancer. 2020 Jul;8(2). doi: 10.1136/jitc-2020-000550.

Abstract

BACKGROUND

Tumor mutational burden (TMB) is a significant predictor of immune checkpoint inhibitors (ICIs) efficacy. This study investigated the correlation between deep learning radiomic biomarker and TMB, including its predictive value for ICIs treatment response in patients with advanced non-small-cell lung cancer (NSCLC).

METHODS

CT images from 327 patients with TMB data (TMB median=6.067 mutations per megabase (range: 0 to 42.151)) were retrospectively collected and randomly divided into a training (n=236), validation (n=26), and test cohort (n=65). We used 3D-densenet to estimate the target tumor area, which used 1020 deep learning features to distinguish High-TMB from Low-TMB patients and establish the TMB radiomic biomarker (TMBRB). The TMBRB was developed in the training cohort combined with validation cohort and evaluated in the test cohort. The predictive value of TMBRB was assessed in a cohort of 123 NSCLC patients who had received ICIs (survival median=462 days (range: 16 to 1128)).

RESULTS

TMBRB discriminated between High-TMB and Low-TMB patients in the training cohort (area under the curve (AUC): 0.85, 95% CI: 0.84 to 0.87))and test cohort (AUC: 0.81, 95% CI: 0.77 to 0.85). In this study, the predictive value of TMBRB was better than that of a histological subtype (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.71, 95% CI: 0.66 to 0.76) or Radiomic model (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.74, 95% CI: 0.69 to 0.79). When predicting immunotherapy efficacy, TMBRB divided patients into a high- and low-risk group with distinctly different overall survival (OS; HR: 0.54, 95% CI: 0.31 to 0.95; p=0.030) and progression-free survival (PFS; HR: 1.78, 95% CI: 1.07 to 2.95; p=0.023). Moreover, TMBRB had a better predictive ability when combined with the Eastern Cooperative Oncology Group performance status (OS: p=0.007; PFS: p=0.003). Visual analysis revealed that tumor microenvironment was important for predicting TMB.

CONCLUSION

By combining deep learning technology and CT images, we developed an individual non-invasive biomarker that could distinguish High-TMB from Low-TMB, which might inform decisions on the use of ICIs in patients with advanced NSCLC.

摘要

背景

肿瘤突变负担(TMB)是免疫检查点抑制剂(ICI)疗效的重要预测因子。本研究旨在探讨深度学习放射组学标志物与 TMB 之间的相关性,包括其对晚期非小细胞肺癌(NSCLC)患者ICI 治疗反应的预测价值。

方法

回顾性收集了 327 名 TMB 数据患者的 CT 图像(TMB 中位数=6.067 个突变/兆碱基(范围:0 至 42.151)),并随机分为训练集(n=236)、验证集(n=26)和测试集(n=65)。我们使用 3D-densenet 来估计目标肿瘤区域,该区域使用 1020 个深度学习特征来区分高 TMB 和低 TMB 患者,并建立 TMB 放射组学标志物(TMBRB)。TMBRB 在训练集和验证集联合开发,并在测试集中进行评估。在接受 ICI 治疗的 123 名 NSCLC 患者队列中评估了 TMBRB 的预测价值(生存中位数=462 天(范围:16 至 1128))。

结果

TMBRB 在训练集(曲线下面积(AUC):0.85,95%CI:0.84 至 0.87)和测试集(AUC:0.81,95%CI:0.77 至 0.85)中能够区分高 TMB 和低 TMB 患者。在这项研究中,TMBRB 的预测价值优于组织学亚型(训练集 AUC:0.75,95%CI:0.72 至 0.77;测试集 AUC:0.71,95%CI:0.66 至 0.76)或放射组学模型(训练集 AUC:0.75,95%CI:0.72 至 0.77;测试集 AUC:0.74,95%CI:0.69 至 0.79)。当预测免疫治疗疗效时,TMBRB 将患者分为高风险和低风险组,两组总生存(OS;HR:0.54,95%CI:0.31 至 0.95;p=0.030)和无进展生存(PFS;HR:1.78,95%CI:1.07 至 2.95;p=0.023)差异明显。此外,当与东部肿瘤协作组表现状态(OS:p=0.007;PFS:p=0.003)联合使用时,TMBRB 具有更好的预测能力。可视化分析表明,肿瘤微环境对预测 TMB 很重要。

结论

通过结合深度学习技术和 CT 图像,我们开发了一种个体非侵入性生物标志物,能够区分高 TMB 和低 TMB,这可能为晚期 NSCLC 患者使用 ICI 提供决策依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbdb/7342823/db9be74cf1d3/jitc-2020-000550f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验