Suppr超能文献

深度学习在癌症病理学中的应用:新一代临床生物标志物。

Deep learning in cancer pathology: a new generation of clinical biomarkers.

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Br J Cancer. 2021 Feb;124(4):686-696. doi: 10.1038/s41416-020-01122-x. Epub 2020 Nov 18.

Abstract

Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings.

摘要

肿瘤学的临床工作流程依赖于预测性和预后性分子生物标志物。然而,这些日益复杂的生物标志物数量的增加往往会增加常规日常肿瘤学实践中决策的成本和时间;此外,生物标志物通常需要肿瘤组织,而不仅仅是常规诊断材料。然而,常规可用的肿瘤组织中包含大量目前尚未充分利用的临床相关信息。深度学习 (DL) 作为人工智能 (AI) 技术的进步,使得从癌症的常规组织学图像中直接提取以前隐藏的信息成为可能,从而提供了潜在的临床有用信息。在这里,我们概述了 DL 如何直接从组织学图像中提取生物标志物的新兴概念,并总结了癌症组织学的基本和高级图像分析研究。基本的图像分析任务包括检测、分级和组织学图像中肿瘤组织的亚型;其目的是使病理学工作流程自动化,因此不会立即转化为临床决策。超越这些基本方法,DL 还被用于高级图像分析任务,这些任务有可能直接影响临床决策过程。这些高级方法包括推断分子特征、预测生存和端到端预测治疗反应。此类 DL 系统的预测可以简化和丰富临床决策,但需要在临床环境中进行严格的外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e079/7884739/cbaab35f1f5c/41416_2020_1122_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验