Wang Xinxin, Bouzembrak Yamine, Lansink Agjm Oude, van der Fels-Klerx H J
Business Economics, Wageningen University & Research, Wageningen, The Netherlands.
Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
Compr Rev Food Sci Food Saf. 2022 Jan;21(1):416-434. doi: 10.1111/1541-4337.12868. Epub 2021 Dec 14.
Machine learning (ML) has proven to be a useful technology for data analysis and modeling in a wide variety of domains, including food science and engineering. The use of ML models for the monitoring and prediction of food safety is growing in recent years. Currently, several studies have reviewed ML applications on foodborne disease and deep learning applications on food. This article presents a literature review on ML applications for monitoring and predicting food safety. The paper summarizes and categorizes ML applications in this domain, categorizes and discusses data types used for ML modeling, and provides suggestions for data sources and input variables for future ML applications. The review is based on three scientific literature databases: Scopus, CAB Abstracts, and IEEE. It includes studies that were published in English in the period from January 1, 2011 to April 1, 2021. Results show that most studies applied Bayesian networks, Neural networks, or Support vector machines. Of the various ML models reviewed, all relevant studies showed high prediction accuracy by the validation process. Based on the ML applications, this article identifies several avenues for future studies applying ML models for the monitoring and prediction of food safety, in addition to providing suggestions for data sources and input variables.
机器学习(ML)已被证明是一种在包括食品科学与工程在内的广泛领域中用于数据分析和建模的有用技术。近年来,使用ML模型监测和预测食品安全的情况日益增多。目前,已有多项研究综述了ML在食源性疾病方面的应用以及深度学习在食品方面的应用。本文对ML在监测和预测食品安全方面的应用进行了文献综述。该论文总结并分类了该领域中的ML应用,对用于ML建模的数据类型进行了分类和讨论,并为未来ML应用的数据源和输入变量提供了建议。该综述基于三个科学文献数据库:Scopus、CAB文摘库和IEEE。它涵盖了2011年1月1日至2021年4月1日期间以英文发表的研究。结果表明,大多数研究应用了贝叶斯网络、神经网络或支持向量机。在所综述的各种ML模型中,所有相关研究在验证过程中均显示出较高的预测准确性。基于ML应用,本文除了为数据源和输入变量提供建议外,还确定了未来应用ML模型监测和预测食品安全的几个研究方向。