College of Agronomy, Liaocheng Universitygrid.411351.3, Liaocheng, China.
State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
J Virol. 2022 Feb 23;96(4):e0163021. doi: 10.1128/JVI.01630-21. Epub 2021 Dec 15.
The matrix protein (M1) of influenza A virus plays an important role in replication, assembly, and budding. A previous study found that aspartic acid (D) at position 30 and alanine (A) at position 215 of M1 contribute to the high pathogenicity of H5N1 viruses in mice, and double mutations of D to asparagine (N) at position 30 (D30N) and A to threonine (T) at position 215 (A215T) in M1 dramatically attenuate H5N1 viruses in mice. However, the underlying mechanisms by which these M1 mutations attenuate the virulence of H5N1 viruses are unknown. Here, we found that the amino acid mutation A215T eliminates the SUMOylation of M1 by reducing its interaction with the host SUMO1 protein, significantly reducing the stability of M1, slowing the export of the M1-vRNP complex from the nucleus to the cytoplasm, and reducing viral replication in MDCK cells. We further found that the D30N mutation in M1 alters the shape of progeny viruses from filamentous to spherical virions. Our findings reveal an essential role for M1 215A SUMOylation and M1 30D-related filamentous morphology in the pathogenesis of avian influenza viruses, which could be targeted in novel antiviral drug designs. Identification of the pathogenic mechanism of highly pathogenic avian influenza viruses in mammals is helpful to develop novel anti-influenza virus strategies. Two amino acid mutations (D30N and A215T) in M1 were found to collectively attenuate H5N1 influenza viruses in mice, but the underlying mechanism remained unknown. This study found that the A215T mutation significantly decreases the SUMOylation of M1, which in turn attenuates the replication of H5N1 virus in mammalian cells. The D30N mutation in M1 was found to change the virion shape from filamentous to spherical. These findings are important for understanding the molecular mechanism of virulence of highly pathogenic avian influenza viruses in mammals.
流感 A 病毒的基质蛋白 (M1) 在复制、组装和出芽中发挥重要作用。先前的研究发现,M1 中的第 30 位天冬氨酸 (D) 和第 215 位丙氨酸 (A) 有助于 H5N1 病毒在小鼠中的高致病性,M1 中的第 30 位天冬氨酸 (D) 突变为天冬酰胺 (N) (D30N) 和第 215 位丙氨酸 (A) 突变为苏氨酸 (T) (A215T) 可显著降低 H5N1 病毒在小鼠中的毒力。然而,这些 M1 突变降低 H5N1 病毒毒力的潜在机制尚不清楚。在这里,我们发现氨基酸突变 A215T 通过减少其与宿主 SUMO1 蛋白的相互作用来消除 M1 的 SUMO 化,从而显著降低 M1 的稳定性,减缓 M1-vRNP 复合物从细胞核到细胞质的输出,并减少 MDCK 细胞中的病毒复制。我们进一步发现,M1 中的 D30N 突变改变了子代病毒的形状,从丝状变为球形病毒。我们的研究结果揭示了 M1 215A SUMO 化和 M1 30D 相关丝状形态在禽流感病毒发病机制中的重要作用,这可能成为新型抗病毒药物设计的靶点。鉴定哺乳动物中高致病性禽流感病毒的致病机制有助于开发新型抗流感病毒策略。在 M1 中发现两个氨基酸突变 (D30N 和 A215T) 可共同减弱 H5N1 流感病毒在小鼠中的毒力,但潜在机制尚不清楚。本研究发现,A215T 突变显著降低了 M1 的 SUMO 化,从而减弱了 H5N1 病毒在哺乳动物细胞中的复制。M1 中的 D30N 突变使病毒形状从丝状变为球形。这些发现对于理解高致病性禽流感病毒在哺乳动物中的毒力分子机制很重要。