Suppr超能文献

基于深度优化机器学习策略的青光眼能量分割与分类策略

Energetic Glaucoma Segmentation and Classification Strategies Using Depth Optimized Machine Learning Strategies.

机构信息

Department of Networking and Communications, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, India.

Department of Information Technologies, College of Computer and Information Sciences, Majmaah University, AlMajmaah 11952, Saudi Arabia.

出版信息

Contrast Media Mol Imaging. 2021 Nov 25;2021:5709257. doi: 10.1155/2021/5709257. eCollection 2021.

Abstract

Glaucoma is a major threatening cause, in which it affects the optical nerve to lead to a permanent blindness to individuals. The major causes of Glaucoma are high pressure to eyes, family history, irregular sleeping habits, and so on. These kinds of causes lead to Glaucoma easily, and the effect of such disease leads to heavy damage to the internal optic nervous system and the affected person will get permanent blindness within few months. The major problem with this disease is that it is incurable; however, the affection stages can be reduced and the same level of effect as that for the long period can be maintained but this is possible only in the earlier stages of identification. This Glaucoma causes structural effect to the eye ball and it is complex to estimate the cause during regular diagnosis. In medical terms, the Cup to Disc Ratio (CDR) is minimized to the Glaucoma patients suddenly and leads to harmful damage to one's eye in severe manner. The general way to identify the Glaucoma is to take Optical Coherence Tomography (OCT) test, in which it captures the uncovered portion of eye ball (backside) and it is an efficient way to visualize diverse portions of eyes with optical nerve visibility shown clearly. The OCT images are mainly used to identify the diseases like Glaucoma with proper and robust accuracy levels. In this work, a new methodology is introduced to identify the Glaucoma in earlier stages, called Depth Optimized Machine Learning Strategy (DOMLS), in which it adapts the new optimization logic called Modified K-Means Optimization Logic (MkMOL) to provide best accuracy in results, and the proposed approach assures the accuracy level of more than 96.2% with least error rate of 0.002%. This paper focuses on the identification of early stage of Glaucoma and provides an efficient solution to people in case of effect by such disease using OCT images. The exact position pointed out is handled by using Region of Interest- (ROI-) based optical region selection, in which it is easy to point the optical cup (OC) and optical disc (OD). The proposed algorithm of DOMLS proves the accuracy levels in estimation of Glaucoma and the practical proofs are shown in the Result and Discussions section in a clear manner.

摘要

青光眼是一种主要的威胁性疾病,它会影响视神经,导致个体永久性失明。青光眼的主要原因是眼压高、家族史、不规律的睡眠习惯等。这些原因容易导致青光眼,而且这种疾病的影响会对内部视神经系统造成严重损害,受影响的人在几个月内就会永久性失明。这种疾病的主要问题是它无法治愈;然而,可以减少疾病的影响阶段,并保持与长期相同的效果,但这只有在早期识别阶段才有可能。这种青光眼对眼球造成结构性影响,在常规诊断中很难估计病因。在医学术语中,杯盘比 (CDR) 会突然减小到青光眼患者身上,并以严重的方式对眼睛造成有害损害。识别青光眼的一般方法是进行光学相干断层扫描 (OCT) 测试,它可以捕捉眼球的未覆盖部分(背面),这是一种有效显示视神经清晰可见的眼睛不同部分的方法。OCT 图像主要用于识别青光眼等疾病,具有适当和稳健的准确性水平。在这项工作中,引入了一种新的方法来识别早期青光眼,称为深度优化机器学习策略 (DOMLS),它采用了新的优化逻辑,称为改进 K-均值优化逻辑 (MkMOL),以提供最佳的准确性,所提出的方法保证了超过 96.2%的准确性,误差率最小为 0.002%。本文专注于早期青光眼的识别,并使用 OCT 图像为受这种疾病影响的人们提供有效的解决方案。通过使用基于感兴趣区域的光学区域选择 (ROI),可以很容易地指出光学杯 (OC) 和光学盘 (OD),从而指出确切的位置。基于深度优化的机器学习策略 (DOMLS) 的算法在青光眼的评估中证明了准确性水平,实际证明在结果和讨论部分以清晰的方式呈现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验