Suppr超能文献

因自带设备研究设计导致的人口统计学失衡。

Demographic Imbalances Resulting From the Bring-Your-Own-Device Study Design.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, United States.

Clinical and Translational Science Institute, Duke University, Durham, NC, United States.

出版信息

JMIR Mhealth Uhealth. 2022 Apr 8;10(4):e29510. doi: 10.2196/29510.

Abstract

Digital health technologies, such as smartphones and wearable devices, promise to revolutionize disease prevention, detection, and treatment. Recently, there has been a surge of digital health studies where data are collected through a bring-your-own-device (BYOD) approach, in which participants who already own a specific technology may voluntarily sign up for the study and provide their digital health data. BYOD study design accelerates the collection of data from a larger number of participants than cohort design; this is possible because researchers are not limited in the study population size based on the number of devices afforded by their budget or the number of people familiar with the technology. However, the BYOD study design may not support the collection of data from a representative random sample of the target population where digital health technologies are intended to be deployed. This may result in biased study results and biased downstream technology development, as has occurred in other fields. In this viewpoint paper, we describe demographic imbalances discovered in existing BYOD studies, including our own, and we propose the Demographic Improvement Guideline to address these imbalances.

摘要

数字健康技术,如智能手机和可穿戴设备,有望彻底改变疾病的预防、检测和治疗方式。最近,出现了大量通过“自带设备”(Bring-Your-Own-Device,BYOD)方式收集数据的数字健康研究,参与者可以自愿报名参加研究并提供他们的数字健康数据。与队列设计相比,BYOD 研究设计可以加速从更多参与者那里收集数据;这是因为研究人员不受其预算所能提供的设备数量或熟悉该技术的人数的限制,从而不受研究人群规模的限制。然而,BYOD 研究设计可能无法支持从目标人群中具有代表性的随机样本中收集数据,而数字健康技术正是旨在将其部署到这些人群中。这可能导致有偏差的研究结果和有偏差的下游技术发展,这在其他领域已经发生过。在这篇观点文章中,我们描述了现有 BYOD 研究中发现的人口统计学失衡现象,包括我们自己的研究,并提出了人口统计学改善指南来解决这些失衡问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a02/9034431/16ac355283d6/mhealth_v10i4e29510_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验