Suppr超能文献

基于移动数据窗口的部分耦合估计方法,用于对包含不可测状态的动态系统进行建模。

Moving data window-based partially-coupled estimation approach for modeling a dynamical system involving unmeasurable states.

作者信息

Cui Ting, Ding Feng, Hayat Tasawar

机构信息

Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, PR China.

Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, PR China; School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430038, PR China.

出版信息

ISA Trans. 2022 Sep;128(Pt B):437-452. doi: 10.1016/j.isatra.2021.11.011. Epub 2021 Dec 1.

Abstract

The simultaneous parameter and state estimation for a multi-input multi-output (MIMO) state space system from a set of measurement data is taken into account in this paper. Firstly, in line with the number of the system outputs, the considered MIMO system is transformed to some subsystems, which lessens the dimensions and the number of the parameters to be estimated. Secondly, by designing the moving data window that contains the latest batch of collected data, we develop a moving data window-based partially-coupled average extended stochastic gradient algorithm for parameter estimation. Thirdly, once the parameter estimates are obtained, a new state filter is designed to produce the estimates of the unmeasurable states by means of the Kalman filtering principle. Then we propose a combined state filtering and moving data window-based partially-coupled average extended stochastic gradient (CSF-MDW-PC-A-ESG) algorithm to produce the estimates of the parameters and states simultaneously. To reveal the superiority of the CSF-MDW-PC-A-ESG algorithm, a combined state filtering and partially-coupled average extended stochastic gradient (CSF-PC-A-ESG) algorithm is given to make a comparison. Finally, the effectiveness and superiority of the proposed CSF-MDW-PC-A-ESG algorithm are proved in a simulation example. The results from the illustrative example show that the CSF-MDW-PC-A-ESG algorithm is effective to produce the estimates of the parameters and states and that the CSF-MDW-PC-A-ESG algorithm has the higher efficient data utilization, the more accurate parameter estimation capability and the better model fitting ability than the CSF-PC-A-ESG algorithm.

摘要

本文考虑了从一组测量数据中对多输入多输出(MIMO)状态空间系统进行参数和状态的同时估计。首先,根据系统输出的数量,将所考虑的MIMO系统转换为一些子系统,这减少了待估计参数的维度和数量。其次,通过设计包含最新一批收集数据的移动数据窗口,我们开发了一种基于移动数据窗口的部分耦合平均扩展随机梯度算法用于参数估计。第三,一旦获得参数估计值,设计一个新的状态滤波器,通过卡尔曼滤波原理产生不可测状态的估计值。然后我们提出一种组合状态滤波和基于移动数据窗口的部分耦合平均扩展随机梯度(CSF-MDW-PC-A-ESG)算法来同时产生参数和状态的估计值。为了揭示CSF-MDW-PC-A-ESG算法的优越性,给出一种组合状态滤波和部分耦合平均扩展随机梯度(CSF-PC-A-ESG)算法进行比较。最后,通过一个仿真例子证明了所提出的CSF-MDW-PC-A-ESG算法的有效性和优越性。示例结果表明,CSF-MDW-PC-A-ESG算法能有效地产生参数和状态的估计值,并且与CSF-PC-A-ESG算法相比,CSF-MDW-PC-A-ESG算法具有更高的数据利用效率、更准确的参数估计能力和更好的模型拟合能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验