Suppr超能文献

工作记忆可预测新单词学习,优于现有词汇量和非言语智商。

Working Memory Predicts New Word Learning Over and Above Existing Vocabulary and Nonverbal IQ.

机构信息

Arizona State University, Tempe.

The University of Arizona, Tucson.

出版信息

J Speech Lang Hear Res. 2022 Mar 8;65(3):1044-1069. doi: 10.1044/2021_JSLHR-21-00397. Epub 2022 Feb 11.

Abstract

PURPOSE

The purpose of this study was to use an established model of working memory in children to predict an established model of word learning to determine whether working memory explained word learning variance over and above the contributions of expressive vocabulary and nonverbal IQ.

METHOD

One hundred sixty-seven English-speaking second graders (7- to 8-year-olds) with typical development from two states participated. They completed a comprehensive battery of working memory assessments and six word learning tasks that assessed the creation, storage, retrieval, and production of phonological and semantic representations of novel nouns and verbs and the ability to link those representations.

RESULTS

A structural equation model with expressive vocabulary, nonverbal IQ, and three working memory factors predicting two word learning factors fit the data well. When working memory factors were entered as predictors after expressive vocabulary and nonverbal IQ, they explained 45% of the variance in the phonological word learning factor and 17% of the variance in the semantic word learning factor. Thus, working memory explained a significant amount of word learning variance over and above expressive vocabulary and nonverbal IQ.

CONCLUSION

Results show that working memory is a significant predictor of dynamic word learning over and above the contributions of expressive vocabulary and nonverbal IQ, suggesting that a comprehensive working memory assessment has the potential to identify sources of word learning difficulties and to tailor word learning interventions to a child's working memory strengths and weaknesses.

SUPPLEMENTAL MATERIAL

https://doi.org/10.23641/asha.19125911.

摘要

目的

本研究旨在利用儿童工作记忆的既定模型来预测既定的词汇学习模型,以确定工作记忆是否能够在表达性词汇和非言语智商的贡献之外解释词汇学习的差异。

方法

来自两个州的 167 名英语为母语的二年级学生(7-8 岁)参与了本研究。他们完成了一系列全面的工作记忆评估和六个词汇学习任务,这些任务评估了创造、存储、检索和产生新名词和动词的语音和语义表示的能力,以及将这些表示进行链接的能力。

结果

一个将表达性词汇、非言语智商和三个工作记忆因素预测两个词汇学习因素的结构方程模型很好地拟合了数据。当工作记忆因素在表达性词汇和非言语智商之后作为预测因子输入时,它们解释了语音词汇学习因素的 45%和语义词汇学习因素的 17%的方差。因此,工作记忆在表达性词汇和非言语智商之外解释了词汇学习差异的重要部分。

结论

结果表明,工作记忆是动态词汇学习的重要预测因素,超过了表达性词汇和非言语智商的贡献,这表明全面的工作记忆评估有可能识别词汇学习困难的来源,并根据孩子的工作记忆优势和劣势来调整词汇学习干预措施。

补充材料

https://doi.org/10.23641/asha.19125911.

相似文献

2
The Structure of Word Learning in Young School-Age Children.儿童在学语阶段的词汇学习结构。
J Speech Lang Hear Res. 2020 May 22;63(5):1446-1466. doi: 10.1044/2020_JSLHR-19-00186. Epub 2020 Apr 28.
5
Learning Orthographic and Semantic Representations Simultaneously During Shared Reading.在共享阅读过程中同时学习正字法和语义表征
J Speech Lang Hear Res. 2021 Mar 17;64(3):909-921. doi: 10.1044/2020_JSLHR-20-00520. Epub 2021 Feb 23.
6
Verbal Working Memory in Children With Cochlear Implants.人工耳蜗植入儿童的言语工作记忆
J Speech Lang Hear Res. 2017 Nov 9;60(11):3342-3364. doi: 10.1044/2017_JSLHR-H-16-0474.

引用本文的文献

1
Working Memory Structure in Young Spanish-English Bilingual Children.西班牙裔-英语双语幼儿的工作记忆结构
Biling (Camb Engl). 2025 Mar;28(2):469-483. doi: 10.1017/s1366728924000580. Epub 2024 Dec 13.
3
Word Learning in Bilingual Children at Risk for Developmental Language Disorder.双语儿童在发展性语言障碍风险中的词汇学习。
Am J Speech Lang Pathol. 2024 Nov 4;33(6):2746-2766. doi: 10.1044/2024_AJSLP-23-00489. Epub 2024 Oct 7.
6
The Relation Between Attention and Memory.注意与记忆的关系。
Annu Rev Psychol. 2024 Jan 18;75:183-214. doi: 10.1146/annurev-psych-040723-012736. Epub 2023 Sep 15.

本文引用的文献

1
Model-based incremental validity.基于模型的增量效度。
Psychol Methods. 2022 Dec;27(6):1039-1060. doi: 10.1037/met0000342. Epub 2021 Dec 20.
3
The Structure of Word Learning in Young School-Age Children.儿童在学语阶段的词汇学习结构。
J Speech Lang Hear Res. 2020 May 22;63(5):1446-1466. doi: 10.1044/2020_JSLHR-19-00186. Epub 2020 Apr 28.
10
A meta-analysis on the relation between reading and working memory.阅读与工作记忆关系的元分析。
Psychol Bull. 2018 Jan;144(1):48-76. doi: 10.1037/bul0000124. Epub 2017 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验