Suppr超能文献

AL-Net:基于多任务学习的注意力学习网络用于颈椎核分割。

AL-Net: Attention Learning Network Based on Multi-Task Learning for Cervical Nucleus Segmentation.

出版信息

IEEE J Biomed Health Inform. 2022 Jun;26(6):2693-2702. doi: 10.1109/JBHI.2021.3136568. Epub 2022 Jun 3.

Abstract

Cervical nucleus segmentation is a crucial and challenging issue in automatic pathological diagnosis due to uneven staining, blurry boundaries, and adherent or overlapping nuclei in nucleus images. To overcome the limitation of current methods, we propose a multi-task network based on U-Net for cervical nucleus segmentation. This network consists of a primary task and an auxiliary task. The primary task is employed to predict nuclei regions. The auxiliary task, which predicts the boundaries of nuclei, is designed to improve the feature extraction of the main task. Furthermore, a context encoding layer is added behind each encoding layer of the U-Net. The output of each context encoding layer is processed by an attention learning module and then fused with the features of the decoding layer. In addition, a codec block is used in the attention learning module to obtain saliency-based attention and focused attention simultaneously. Experiment results show that the proposed network performs better than the state-of-the-art methods on the 2014 ISBI dataset, BNS, MoNuSeg, and our nucluesSeg dataset.

摘要

宫颈细胞核分割是自动病理诊断中的一个关键且具有挑战性的问题,这是由于细胞核图像中存在不均匀的染色、模糊的边界以及粘连或重叠的细胞核。为了克服当前方法的局限性,我们提出了一种基于 U-Net 的多任务网络用于宫颈细胞核分割。该网络由主任务和辅助任务组成。主任务用于预测细胞核区域。辅助任务预测细胞核的边界,旨在提高主任务的特征提取能力。此外,在 U-Net 的每个编码层后面添加了一个上下文编码层。每个上下文编码层的输出通过注意力学习模块进行处理,然后与解码层的特征融合。此外,在注意力学习模块中使用了编解码器块来同时获得基于显著性的注意力和聚焦注意力。实验结果表明,所提出的网络在 2014 年 ISBI 数据集、BNS、MoNuSeg 和我们的 nucluesSeg 数据集上的表现优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验