Suppr超能文献

BLA-Net:用于皮肤病变分割的边界学习辅助网络。

BLA-Net:Boundary learning assisted network for skin lesion segmentation.

机构信息

Faculty of Information Technology, Beijing University of Technology, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, China.

Faculty of Information Technology, Beijing University of Technology, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, China.

出版信息

Comput Methods Programs Biomed. 2022 Nov;226:107190. doi: 10.1016/j.cmpb.2022.107190. Epub 2022 Oct 19.

Abstract

BACKGROUND AND OBJECTIVE

Automatic skin lesion segmentation plays an important role in computer-aided diagnosis of skin diseases. However, current segmentation networks cannot accurately detect the boundaries of the skin lesion areas.

METHODS

In this paper, a boundary learning assisted network for skin lesion segmentation is proposed, namely BLA-Net, which adopts ResNet34 as backbone network under an encoder-decoder framework. The overall architecture is divided into two key components: Primary Segmentation Network (PSNet) and Auxiliary Boundary Learning Network (ABLNet). PSNet is to locate the skin lesion areas. Dynamic Deformable Convolution is introduced into the lower layer of the encoder, so that the network can effectively deal with complex skin lesion objects. And a Global Context Information Extraction Module is proposed and embedded into the high layer of the encoder to capture multi-receptive field and multi-scale global context features. ABLNet is to finely detect the boundaries of skin lesion area based on the low-level features of the encoder, in which an object regional attention mechanism is proposed to enhance the features of lesion object area and suppress those of irrelevant regions. ABLNet can assist the PSNet to realize accurate skin lesion segmentation.

RESULTS

We verified the segmentation performance of the proposed method on the two public dermoscopy datasets, namely ISBI 2016 and ISIC 2018. The experimental results show that our proposed method can achieve the Jaccard Index of 86.6%, 84.8% and the Dice Coefficient of 92.4%, 91.2% on ISBI 2016 and ISIC 2018 datasets, respectively.

CONCLUSIONS

Compared with existing methods, the proposed method can achieve the state-of-the-arts segmentation accuracy with less model parameters, which can assist dermatologists in clinical diagnosis and treatment.

摘要

背景与目的

自动皮肤病变分割在皮肤病的计算机辅助诊断中起着重要作用。然而,目前的分割网络无法准确地检测皮肤病变区域的边界。

方法

本文提出了一种边界学习辅助的皮肤病变分割网络,即 BLA-Net,它在编码器-解码器框架下采用 ResNet34 作为骨干网络。整体架构分为两个关键组件:主分割网络(PSNet)和辅助边界学习网络(ABLNet)。PSNet 用于定位皮肤病变区域。在编码器的低层引入动态可变形卷积,使网络能够有效地处理复杂的皮肤病变对象。并提出了全局上下文信息提取模块并嵌入到编码器的高层,以捕获多感受野和多尺度的全局上下文特征。ABLNet 基于编码器的低层特征,精细地检测皮肤病变区域的边界,其中提出了目标区域注意力机制,以增强病变对象区域的特征并抑制无关区域的特征。ABLNet 可以辅助 PSNet 实现准确的皮肤病变分割。

结果

我们在两个公共皮肤镜数据集,即 ISBI 2016 和 ISIC 2018 上验证了所提出方法的分割性能。实验结果表明,我们提出的方法在 ISBI 2016 和 ISIC 2018 数据集上分别可以达到 86.6%、84.8%的 Jaccard 指数和 92.4%、91.2%的 Dice 系数。

结论

与现有方法相比,所提出的方法可以用更少的模型参数实现最先进的分割精度,可以辅助皮肤科医生进行临床诊断和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验