Yuebei People's Hospital, Shantou University Medical College, No. 133 of Huimin South road, Wujiang District, Shaoguan City, 512025, China.
Key Lab of the Basic Pharmacology of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou Province, 6 West Xue-Fu Road, Zunyi City, 563000, China.
Sci Rep. 2021 Dec 21;11(1):24367. doi: 10.1038/s41598-021-03000-9.
Persistent infection with high-risk types Human Papillomavirus could cause diseases including cervical cancers and oropharyngeal cancers. Nonetheless, so far there is no effective pharmacotherapy for treating the infection from high-risk HPV types, and hence it remains to be a severe threat to the health of female. Based on drug repositioning strategy, we trained and benchmarked multiple machine learning models so as to predict potential effective antiviral drugs for HPV infection in this work. Through optimizing models, measuring models' predictive performance using 182 pairs of antiviral-target interaction dataset which were all approved by the United States Food and Drug Administration, and benchmarking different models' predictive performance, we identified the optimized Support Vector Machine and K-Nearest Neighbor classifier with high precision score were the best two predictors (0.80 and 0.85 respectively) amongst classifiers of Support Vector Machine, Random forest, Adaboost, Naïve Bayes, K-Nearest Neighbors, and Logistic regression classifier. We applied these two predictors together and successfully predicted 57 pairs of antiviral-HPV protein interactions from 864 pairs of antiviral-HPV protein associations. Our work provided good drug candidates for anti-HPV drug discovery. So far as we know, we are the first one to conduct such HPV-oriented computational drug repositioning study.
高危型人乳头瘤病毒(HPV)持续感染可导致宫颈癌和口咽癌等疾病。然而,目前尚无针对高危 HPV 型感染的有效药物治疗方法,因此仍然严重威胁着女性的健康。基于药物重定位策略,我们在这项工作中训练和基准测试了多个机器学习模型,以预测 HPV 感染的潜在有效抗病毒药物。通过优化模型、使用经美国食品和药物管理局(FDA)批准的 182 对抗病毒药物-靶点相互作用数据集来衡量模型的预测性能,并基准测试不同模型的预测性能,我们确定了优化的支持向量机和 K 最近邻分类器是预测性能最高的两个分类器(分别为 0.80 和 0.85),优于支持向量机、随机森林、自适应增强、朴素贝叶斯、K 最近邻和逻辑回归分类器。我们将这两个预测器结合起来,成功地从 864 对抗病毒-HPV 蛋白关联中预测了 57 对抗病毒-HPV 蛋白相互作用。我们的工作为抗 HPV 药物发现提供了良好的候选药物。据我们所知,我们是第一个进行此类 HPV 导向的计算药物重定位研究的人。