Wahl Carolin B, Aykol Muratahan, Swisher Jordan H, Montoya Joseph H, Suram Santosh K, Mirkin Chad A
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA.
Sci Adv. 2021 Dec 24;7(52):eabj5505. doi: 10.1126/sciadv.abj5505. Epub 2021 Dec 22.
In materials discovery efforts, synthetic capabilities far outpace the ability to extract meaningful data from them. To bridge this gap, machine learning methods are necessary to reduce the search space for identifying desired materials. Here, we present a machine learning–driven, closed-loop experimental process to guide the synthesis of polyelemental nanomaterials with targeted structural properties. By leveraging data from an eight-dimensional chemical space (Au-Ag-Cu-Co-Ni-Pd-Sn-Pt) as inputs, a Bayesian optimization algorithm is used to suggest previously unidentified nanoparticle compositions that target specific interfacial motifs for synthesis, results of which are iteratively shared back with the algorithm. This feedback loop resulted in successful syntheses of 18 heterojunction nanomaterials that are too complex to discover by chemical intuition alone, including extremely chemically complex biphasic nanoparticles reported to date. Platforms like the one developed here are poised to transform materials discovery across a wide swath of applications and industries.
在材料发现工作中,合成能力远远超过了从材料中提取有意义数据的能力。为了弥合这一差距,机器学习方法对于减少识别所需材料的搜索空间是必要的。在此,我们展示了一个由机器学习驱动的闭环实验过程,以指导具有目标结构特性的多元素纳米材料的合成。通过利用来自八维化学空间(金 - 银 - 铜 - 钴 - 镍 - 钯 - 锡 - 铂)的数据作为输入,贝叶斯优化算法被用于建议先前未确定的纳米颗粒组成,这些组成针对特定的界面基序进行合成,其结果会迭代地反馈给该算法。这个反馈回路成功合成了18种异质结纳米材料,这些材料仅凭化学直觉过于复杂而难以发现,包括迄今为止报道的极其化学复杂的双相纳米颗粒。像这里开发的这样的平台有望在广泛的应用和行业中改变材料发现。