Suppr超能文献

利用机器学习对电池快速充电协议进行闭环优化。

Closed-loop optimization of fast-charging protocols for batteries with machine learning.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Department of Computer Science, Stanford University, Stanford, CA, USA.

出版信息

Nature. 2020 Feb;578(7795):397-402. doi: 10.1038/s41586-020-1994-5. Epub 2020 Feb 19.

Abstract

Simultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years. Furthermore, both large parameter spaces and high sampling variability necessitate a large number of experiments. Hence, the key challenge is to reduce both the number and the duration of the experiments required. Here we develop and demonstrate a machine learning methodology  to efficiently optimize a parameter space specifying the current and voltage profiles of six-step, ten-minute fast-charging protocols for maximizing battery cycle life, which can alleviate range anxiety for electric-vehicle users. We combine two key elements to reduce the optimization cost: an early-prediction model, which reduces the time per experiment by predicting the final cycle life using data from the first few cycles, and a Bayesian optimization algorithm, which reduces the number of experiments by balancing exploration and exploitation to efficiently probe the parameter space of charging protocols. Using this methodology, we rapidly identify high-cycle-life charging protocols among 224 candidates in 16 days (compared with over 500 days using exhaustive search without early prediction), and subsequently validate the accuracy and efficiency of our optimization approach. Our closed-loop methodology automatically incorporates feedback from past experiments to inform future decisions and can be generalized to other applications in battery design and, more broadly, other scientific domains that involve time-intensive experiments and multi-dimensional design spaces.

摘要

在耗时的实验中同时优化许多设计参数,这在广泛的科学和工程学科中都会造成瓶颈。锂离子电池在材料选择、电池制造和运行过程中的工艺和控制优化就是一个例子。一个典型的目标是最大化电池寿命;然而,即使是进行一次评估寿命的实验也可能需要数月到数年的时间。此外,大的参数空间和高的采样变异性都需要大量的实验。因此,关键的挑战是减少所需实验的数量和持续时间。在这里,我们开发并展示了一种机器学习方法,用于有效地优化指定六步、十分钟快速充电协议电流和电压曲线的参数空间,以最大化电池循环寿命,从而缓解电动汽车用户的里程焦虑。我们结合了两个关键要素来降低优化成本:一个早期预测模型,它使用前几个周期的数据来预测最终的循环寿命,从而减少每个实验的时间;以及一个贝叶斯优化算法,它通过平衡探索和利用来有效地探测充电协议的参数空间,从而减少实验的数量。使用这种方法,我们在 16 天内从 224 个候选方案中快速确定了高循环寿命的充电方案(而没有早期预测的情况下使用穷举搜索则需要超过 500 天),随后验证了我们的优化方法的准确性和效率。我们的闭环方法自动将来自过去实验的反馈纳入未来决策中,并可推广到电池设计以及更广泛的其他科学领域中的其他应用,这些领域涉及时间密集型实验和多维设计空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验